Teaching solid mechanics to artificial intelligence-a fast solver for heterogeneous materials

被引:94
作者
Mianroodi, Jaber Rezaei [1 ]
Siboni, Nima H. [2 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Microstruct Phys & Alloy Design, Dusseldorf, Germany
[2] DeepMetis, Berlin, Germany
关键词
NEURAL-NETWORKS; MICROSTRUCTURE; INFORMATICS; DISCOVERY;
D O I
10.1038/s41524-021-00571-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a deep neural network (DNN) as a fast surrogate model for local stress calculations in inhomogeneous non-linear materials. We show that the DNN predicts the local stresses with 3.8% mean absolute percentage error (MAPE) for the case of heterogeneous elastic media and a mechanical contrast of up to factor of 1.5 among neighboring domains, while performing 103 times faster than spectral solvers. The DNN model proves suited for reproducing the stress distribution in geometries different from those used for training. In the case of elasto-plastic materials with up to 4 times mechanical contrast in yield stress among adjacent regions, the trained model simulates the micromechanics with a MAPE of 6.4% in one single forward evaluation of the network, without any iteration. The results reveal an efficient approach to solve non-linear mechanical problems, with an acceleration up to a factor of 8300 for elastic-plastic materials compared to typical solvers.
引用
收藏
页数:10
相关论文
共 56 条
[1]  
Abadi M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
[2]   Microstructure Recognition by Deep Learning [J].
Adachi, Yoshitaka ;
Taguchi, Motoki ;
Hirokawa, Shogo .
TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2016, 102 (12) :722-729
[3]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[4]  
[Anonymous], INT C LEARNING REPRE
[5]   "What is relevant in a text document?": An interpretable machine learning approach [J].
Arras, Leila ;
Horn, Franziska ;
Montavon, Gregoire ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2017, 12 (08)
[6]   General Multi-Fidelity Framework for Training Artificial Neural Networks With Computational Models [J].
Aydin, Roland Can ;
Braeu, Fabian Albert ;
Cyron, Christian Johannes .
FRONTIERS IN MATERIALS, 2019, 6
[7]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[8]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[9]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[10]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)