Recovery of MERRF Fibroblasts and Cybrids Pathophysiology by Coenzyme Q10

被引:41
|
作者
De la Mata, Mario [1 ,2 ]
Garrido-Maraver, Juan [1 ,2 ]
Cotan, David [1 ,2 ]
Cordero, Mario D. [1 ,2 ]
Oropesa-Avila, Manuel [1 ,2 ]
Gomez Izquierdo, Lourdes [3 ]
De Miguel, Manuel [4 ]
Bautista Lorite, Juan [5 ]
Rivas Infante, Eloy [3 ]
Ybot, Patricia [6 ]
Jackson, Sandra [7 ]
Sanchez-Alcazar, Jose A. [1 ,2 ]
机构
[1] Univ Pablo de Olavide Consejo Super Invest Cient, Ctr Andaluz Biol Desarrollo, CABD CSIC UPO JA, Inst Salud Carlos III, Seville 41013, Spain
[2] Univ Pablo de Olavide Consejo Super Invest Cient, Inst Salud Carlos III, CIBERER, Seville 41013, Spain
[3] Hosp Virgen del Rocio, Dept Anat Patol, Seville 41013, Spain
[4] Univ Seville, Fac Med, Dept Citol & Histol Normal & Patol, Seville 41009, Spain
[5] Hosp Sagrado Corazon, Seville 41013, Spain
[6] Hosp Virgen del Rocio, Inst Biomed Sevilla IBIS CSIC, Seville 41013, Spain
[7] Uniklinikum CG Carus, Dresden, Germany
关键词
Mitophagy; Coenzyme Q(10); Mitochondrial disease; MERRF; RAGGED-RED FIBERS; MITOCHONDRIAL PERMEABILITY TRANSITION; MYOCLONIC EPILEPSY; RNALYS MUTATION; DNA; MITOPHAGY; DISEASE; DEGRADATION; DEFICIENCY; TRNA(LYS);
D O I
10.1007/s13311-012-0103-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Mitochondrial DNA mutations are an important cause of human disease for which there is no effective treatment. Myoclonic epilepsy with ragged-red fibers (MERRF) is a mitochondrial disease usually caused by point mutations in transfer RNA genes encoded by mitochondrial DNA. The most common mutation associated with MERRF syndrome, m.8344A > G in the gene MT-TK, which encodes transfer RNA(Lysine), affects the translation of all mitochondrial DNA encoded proteins. This impairs the assembly of the electron transport chain complexes leading to decreased mitochondrial respiratory function. Here we report on how this mutation affects mitochondrial function in primary fibroblast cultures established from patients harboring the A8344G mutation. Coenzyme Q(10) (CoQ) levels, as well as mitochondrial respiratory chain activity, and mitochondrial protein expression levels were significantly decreased in MERRF fibroblasts. Mitotracker staining and imaging analysis of individual mitochondria indicated the presence of small, rounded, depolarized mitochondria in MERRF fibroblasts. Mitochondrial dysfunction was associated with increased oxidative stress and increased degradation of impaired mitochondria by mitophagy. Transmitochondrial cybrids harboring the A8344G mutation also showed CoQ deficiency, mitochondrial dysfunction, and increased mitophagy activity. All these abnormalities in patient-derived fibroblasts and cybrids were partially restored by CoQ supplementation, indicating that these cell culture models may be suitable for screening and validation of novel drug candidates for MERRF disease.
引用
收藏
页码:446 / 463
页数:18
相关论文
共 50 条
  • [41] Plasma coenzyme Q10 status is impaired in selected genetic conditions
    Montero, Raquel
    Yubero, Delia
    Salgado, Maria C.
    Julieta Gonzalez, Maria
    Campistol, Jaume
    del Mar O'Callaghan, Maria
    Pineda, Merce
    Delgadillo, Veronica
    Maynou, Joan
    Fernandez, Guerau
    Montoya, Julio
    Ruiz-Pesini, Eduardo
    Meavilla, Silvia
    Neergheen, Viruna
    Garcia-Cazorla, Angels
    Navas, Placido
    Hargreaves, Iain
    Artuch, Rafael
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [42] Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy
    Sacconi, Sabrina
    Trevisson, Eva
    Salviati, Leonardo
    Ayme, Segolene
    Rigal, Odile
    Garcia Redondo, Alberto
    Mancuso, Michelangelo
    Siciliano, Gabriele
    Tonin, Paola
    Angelini, Corrado
    Aure, Karine
    Lombes, Anne
    Desnuelle, Claude
    NEUROMUSCULAR DISORDERS, 2010, 20 (01) : 44 - 48
  • [43] Coenzyme Q10 redox balance and a free radical scavenger drug
    Yamamoto, Yorihiro
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 595 : 132 - 135
  • [44] Relative bioavailability of coenzyme Q10 formulation for paediatric individualized therapy
    Martinefski, Manuela
    Samassa, Paula
    Buontempo, Fabian
    Hocht, Christian
    Lucangioli, Silvia
    Tripodi, Valeria
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2017, 69 (05) : 567 - 573
  • [45] Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension
    Ho, Meghan J.
    Li, Edmond C. K.
    Wright, James M.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2016, (03):
  • [46] Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation
    Potgieter, Marnie
    Pretorius, Etheresia
    Pepper, Michael S.
    NUTRITION REVIEWS, 2013, 71 (03) : 180 - 188
  • [47] Effect of Dietary Coenzyme Q10 on Cholesterol Metabolism in Growing Chickens
    Honda, Kazuhisa
    Kamisoyama, Hiroshi
    Motoori, Tomoki
    Saneyasu, Takaoki
    Hasegawa, Shin
    JOURNAL OF POULTRY SCIENCE, 2010, 47 (01): : 41 - 47
  • [48] Effect of coenzyme Q10 on radiation-induced fatigue in rats
    Ki, Y.
    Kim, W.
    Kim, Y.
    Kim, D.
    Bae, J.
    Park, D.
    Jeon, H.
    Lee, J.
    Lee, J.
    Nam, J.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2017, 15 (01): : 25 - 30
  • [49] Serum Levels of Coenzyme Q10 in Patients with Multiple System Atrophy
    Kasai, Takashi
    Tokuda, Takahiko
    Ohmichi, Takuma
    Ishii, Ryotaro
    Tatebe, Harutsugu
    Nakagawa, Masanori
    Mizuno, Toshiki
    PLOS ONE, 2016, 11 (01):
  • [50] Coenzyme Q10 supplementation acts as antioxidant on dystrophic muscle cells
    Mizobuti, Daniela Sayuri
    Fogaca, Aline Reis
    Rapucci Moraes, Fernanda dos Santos
    Rapucci Moraes, Luis Henrique
    Mancio, Rafael Dias
    Hermes, Tulio de Almeida
    Macedo, Aline Barbosa
    Valduga, Amanda Harduim
    de Lourenco, Caroline Caramano
    Leite Pereira, Elaine Cristina
    Minatel, Elaine
    CELL STRESS & CHAPERONES, 2019, 24 (06): : 1175 - 1185