Advanced microscopy techniques for biological imaging

被引:0
|
作者
Monneret, Serge [1 ]
Brasselet, Sophie [1 ]
机构
[1] Aix Marseille Univ, CNRS, Inst Fresnel, F-13013 Marseille, France
关键词
quantitative phase microscopy; wavefront sensing; non-linear microscopy; polarisation; biological imaging; DIGITAL HOLOGRAPHIC MICROSCOPY; STOKES-RAMAN-SPECTROSCOPY; FLUORESCENCE POLARIZATION; NONLINEAR MICROSCOPY; PHASE MICROSCOPY; LIVING CELLS; DIFFRACTION PHASE; ORIENTATION; POLARIMETRY; MEMBRANES;
D O I
10.1504/IJNT.2012.045339
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We show that using phase and polarisation information in optical microscopy can provide new insights into biomolecular processes for biological functional imaging. Quantitative phase imaging is demonstrated in living cells with promising capabilities in terms of cells composition and morphology studies. Polarisation-resolved non-linear optical microscopy is described in tissues and lipid membranes with emphasis on the specific properties of two-photon excited fluorescence, Second Harmonic Generation and Coherent Anti-Stokes Raman Imaging. These techniques, based on far field microscopy, provide new information at the molecular scale, complementary to more traditional fluorescence microscopy techniques.
引用
收藏
页码:548 / 566
页数:19
相关论文
共 50 条
  • [32] Second harmonic generation microscopy: a powerful tool for bio-imaging
    Arash Aghigh
    Stéphane Bancelin
    Maxime Rivard
    Maxime Pinsard
    Heide Ibrahim
    François Légaré
    Biophysical Reviews, 2023, 15 : 43 - 70
  • [33] True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast
    Almonte, Lisa
    Colchero, Jaime
    NANOSCALE, 2017, 9 (08) : 2903 - 2915
  • [34] Comparing coherent and spontaneous Raman scattering for biological imaging applications
    Bachler, Brandon R.
    Cui, Meng
    Nichols, Sarah R.
    Ogilvie, Jennifer P.
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES X, 2010, 7569
  • [35] Tomographic diffractive microscopy: basics, techniques and perspectives
    Haeberle, O.
    Belkebir, K.
    Giovaninni, H.
    Sentenac, A.
    JOURNAL OF MODERN OPTICS, 2010, 57 (09) : 686 - 699
  • [36] Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging
    Ait-Belkacem, D.
    Gasecka, A.
    Munhoz, F.
    Brustlein, S.
    Brasselet, S.
    OPTICS EXPRESS, 2010, 18 (14): : 14859 - 14870
  • [37] Fast In Vivo Imaging of SHG Nanoprobes with Multiphoton Light-Sheet Microscopy
    Malkinson, Guy
    Mahou, Pierre
    Chaudan, Elodie
    Gacoin, Thierry
    Sonay, Ali Y.
    Pantazis, Periklis
    Beaurepaire, Emmanuel
    Supatto, Willy
    ACS PHOTONICS, 2020, 7 (04): : 1036 - 1049
  • [38] Back to the future-20 years of progress and developments in photonic microscopy and biological imaging
    Erard, Marie
    Favard, Cyril
    Lavis, Luke D.
    Recher, Gaelle
    Rigneault, Herve
    Sage, Daniel
    JOURNAL OF CELL SCIENCE, 2024, 137 (20)
  • [39] In-depth polarisation resolved SHG microscopy in biological tissues using iterative wavefront optimisation
    Nuzhdin, Dmitry
    Pendleton, Emily G.
    Munger, Eleanor B.
    Mortensen, Luke J.
    Brasselet, Sophie
    JOURNAL OF MICROSCOPY, 2023, 291 (01) : 57 - 72
  • [40] Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions
    Legartova, Sona
    Suchankova, Jana
    Krejci, Jana
    Kovarikova, Alena
    Bartova, Eva
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (129):