Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks

被引:13
作者
Nizar, Muhammad Hanif Ahmad [1 ]
Chan, Chow Khuen [1 ]
Khalil, Azira [2 ]
Yusof, Ahmad Khairuddin Mohamed [3 ]
Lai, Khin Wee [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Jalan Univ, Kuala Lumpur 50603, Malaysia
[2] Islamic Sci Univ Malaysia, Dept Appl Phys, Nilai 71800, Negeri Sembilan, Malaysia
[3] Natl Heart Inst, Kuala Lumpur 50400, Malaysia
关键词
Aortic valve; heart valve; echocardiography; cardiology; convolutional neural network; deep learning; DIAGNOSIS; DISEASE;
D O I
10.2174/1573405615666190114151255
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in frames-per-second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.
引用
收藏
页码:584 / 591
页数:8
相关论文
共 50 条
  • [41] Real-time human pose estimation on a smart walker using convolutional neural networks
    Palermo, Manuel
    Moccia, Sara
    Migliorelli, Lucia
    Frontoni, Emanuele
    Santos, Cristina P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [42] Real-time apnea-hypopnea event detection during sleep by convolutional neural networks
    Choi, Sang Ho
    Yoon, Heenam
    Kim, Hyun Seok
    Kim, Han Byul
    Kwon, Hyun Bin
    Oh, Sung Min
    Lee, Yu Jin
    Park, Kwang Suk
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 123 - 131
  • [43] Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks
    Jiang, Peng
    Chen, Yuehan
    Liu, Bin
    He, Dongjian
    Liang, Chunquan
    IEEE ACCESS, 2019, 7 : 59069 - 59080
  • [44] Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
    Abdeljaber, Osama
    Avci, Onur
    Kiranyaz, Serkan
    Gabbouj, Moncef
    Inman, Daniel J.
    JOURNAL OF SOUND AND VIBRATION, 2017, 388 : 154 - 170
  • [45] Real-time detection of freezing of gait in Parkinson's disease using multi-head convolutional neural networks and a single inertial sensor
    Borzi, Luigi
    Sigcha, Luis
    Rodriguez-Martin, Daniel
    Olmo, Gabriella
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 135
  • [46] Real-time Wave-Prediction Method at Arbitrary Locations Using Data Assimilation and Convolutional Neural Networks
    Ozaki, Shinichiro
    Ide, Yoshihiko
    Yamashiro, Masaru
    Kodama, Mitsuyoshi
    Kotoura, Tsuyoshi
    Hashimoto, Noriaki
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2023, 33 (04) : 388 - 398
  • [47] Real-Time Physical Activity Recognition on Smart Mobile Devices Using Convolutional Neural Networks
    Peppas, Konstantinos
    Tsolakis, Apostolos C.
    Krinidis, Stelios
    Tzovaras, Dimitrios
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 25
  • [48] Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks
    Shen, Biluo
    Zhang, Zhe
    Shi, Xiaojing
    Cao, Caiguang
    Zhang, Zeyu
    Hu, Zhenhua
    Ji, Nan
    Tian, Jie
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (11) : 3482 - 3492
  • [49] A real-time and accurate convolutional neural network for fabric defect detection
    Xueshen Li
    Yong Zhu
    Complex & Intelligent Systems, 2024, 10 : 3371 - 3387
  • [50] Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
    Ignatov, Andrey
    APPLIED SOFT COMPUTING, 2018, 62 : 915 - 922