Classification of Stable Solutions to a Fractional Singular Elliptic Equation with Weight

被引:3
作者
Anh Tuan Duong [1 ,2 ]
Vu Trong Luong [3 ]
Thi Quynh Nguyen [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, VNU Univ Educ, 144 Xuan Thuy, Hanoi, Vietnam
[4] Hanoi Univ Ind, Fac Fundamental Sci, Hanoi, Vietnam
关键词
Liouville type theorems; Stable solutions; Fractional singular elliptic equations; Negative exponent nonlinearity; LIOUVILLE-TYPE THEOREMS; POSITIVE SOLUTIONS; DELTA-U; STABILITY; SYMMETRY; SYSTEMS; E(U);
D O I
10.1007/s10440-020-00347-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p > 0 and (-Delta)(s) is the fractional Laplacian with 0 < s < 1. The purpose of this paper is to establish a classification result for positive stable solutions to a fractional singular elliptic equation with weight (-Delta)(s)u = -h(x)u(-p) in R-N. Here N > 2s and h is a nonnegative, continuous function satisfying h(x) >= C vertical bar x vertical bar(a), a >= 0, when vertical bar x vertical bar large. We prove the nonexistence of positive stable solutions of this equation under the condition N < 2s + 2(a +2s)/p + 1 (p + root p(2) + p) or equivalently p > p(c (N, s, a),) where p(c) (N, s, a) = {(N-2s)(2)-2(N+a) (a+2s)+2 root(a + 2s)(3)(2N-2s+a)/(N-2s) (10s+4a-N) if N < 10s + 4a +infinity if N >= 10s + 4a
引用
收藏
页码:579 / 591
页数:13
相关论文
共 43 条
[1]   Liouville type theorems for two elliptic equations with advections [J].
Anh Tuan Duong ;
Nhu Thang Nguyen ;
Thi Quynh Nguyen .
ANNALES POLONICI MATHEMATICI, 2019, 122 (01) :11-20
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[4]   A SHARP EIGENVALUE THEOREM FOR FRACTIONAL ELLIPTIC EQUATIONS [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (01) :331-351
[5]   On a fractional degenerate Kirchhoff-type problem [J].
Bisci, Giovanni Molica ;
Vilasi, Luca .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
[6]   Multiplicity results for elliptic fractional equations with subcritical term [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04) :721-739
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Liouville type theorems for stable solutions of p-Laplace equation in RN [J].
Chen, Caisheng ;
Song, Hongxue ;
Yang, Hongwei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 :44-52
[9]   Stability of entire solutions to supercritical elliptic problems involving advection [J].
Cowan, Craig .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 104 :1-11
[10]   Liouville theorems for stable Lane-Emden systems and biharmonic problems [J].
Cowan, Craig .
NONLINEARITY, 2013, 26 (08) :2357-2371