Mutual consistency learning for semi-supervised medical image segmentation

被引:187
作者
Wu, Yicheng [1 ]
Ge, Zongyuan [2 ,3 ]
Zhang, Donghao [3 ]
Xu, Minfeng [4 ]
Zhang, Lei [4 ]
Xia, Yong [5 ]
Cai, Jianfei [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
[2] Monash Univ, Monash Airdoc Res, Melbourne, Vic 3800, Australia
[3] Monash eRes Ctr, Monash Med AI, Melbourne, Vic 3800, Australia
[4] Alibaba Grp, DAMO Acad, Hangzhou 311121, Peoples R China
[5] Northwestern Polytech Univ, Natl Engn Lab Integrated AeroSp Ground Ocean Big, Sch Comp Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Mutual consistency; Soft pseudo label; Semi-supervised learning; Medical image segmentation;
D O I
10.1016/j.media.2022.102530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the un-labeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for med-ical image segmentation. Leveraging these challenging samples can make the semi-supervised segmenta-tion model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 53 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]  
Castillo-Navarro J., 2020, P EUR C MACH LEARN P
[4]  
Chaitanya K., 2020, Adv. Neural Inf. Process. Syst., V33, P12546
[5]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[6]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[7]   A Variational U-Net for Conditional Appearance and Shape Generation [J].
Esser, Patrick ;
Sutter, Ekaterina ;
Ommer, Bjoern .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8857-8866
[8]  
Gal Y, 2016, PR MACH LEARN RES, V48
[9]   Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges [J].
Hesamian, Mohammad Hesam ;
Jia, Wenjing ;
He, Xiangjian ;
Kennedy, Paul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :582-596
[10]  
Jin LRY, 2019, Arxiv, DOI [arXiv:1907.00718, 10.48550/arXiv.1907.00718, DOI 10.48550/ARXIV.1907.00718]