Source apportionment of PM2.5 pollution in the central six districts of Beijing, China

被引:42
|
作者
Zhang, Yuepeng [1 ,2 ,3 ]
Li, Xuan [3 ]
Nie, Teng [3 ]
Qi, Jun [3 ]
Chen, Jing [1 ,2 ,4 ]
Wu, Qiong [3 ]
机构
[1] Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Ctr Atmospher Environm Studies, Beijing 100875, Peoples R China
[3] Beijing Municipal Res Inst Environm Protect, Natl Engn Res Ctr Urban Environm Pollut Control, Beijing 100037, Peoples R China
[4] Nanjing Hydraul Res Inst, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210029, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CAMx; PSAT; Source apportionment; Trans-boundary transport; Control strategy; FINE PARTICULATE MATTER; HEALTH; MODEL;
D O I
10.1016/j.jclepro.2017.10.332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matter (PM2.5) has become the primary atmospheric pollutant in Beijing in recent years, causing widespread concern in society. Understanding the origin of PM2.5 is essential for developing effective strategies to reduce PM2.5. In this study, we used the Particulate Matter Source Apportionment Technology (PSAT) in Comprehensive Air Quality Model with Extensions (CAMx) to quantify the contributions of different source regions and emission categories to the PM2.5 concentration in the central six districts of Beijing in January, April, July and October, representing four seasons in 2014. The annual contribution ratios from local, suburb and the surrounding regions of Beijing as well as the outside of boundary region were 47.6, 193, 11.4, and 21.7%, respectively, showing significant contribution of regional transport to the PM2.5 pollution in the central six districts of Beijing. The emission category apportionment results in the central six districts showed distinct seasonal variations with important contribution of coal combustion in winter but minor contribution in the other seasons, dominant contribution of dust in spring, and dominant contribution of the vehicle related sources in the other seasons. Moreover, the detailed contribution proportion of the five emission categories showed clear spatial variation in the suburbs and the surrounding regions. Based on the sensitivity analysis of local emission reduction, the control of the vehicle related sources was the most efficient mitigation measure for the reduction of PM2.5 during the case study period in autumn, but the efficiency of the local mitigation measures was greatly reduced in the period of heavy PM2.5 pollution. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:661 / 669
页数:9
相关论文
共 50 条
  • [1] Source apportionment of PM2.5 pollution in an industrial city in southern China
    Zou, Bei-Bing
    Huang, Xiao-Feng
    Zhang, Bin
    Dai, Jing
    Zeng, Li-Wu
    Feng, Ning
    He, Ling-Yan
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (06) : 1193 - 1202
  • [2] Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia
    Seibert, Radim
    Nikolova, Irina
    Volna, Vladimira
    Krejci, Blanka
    Hladky, Daniel
    ENVIRONMENTS, 2021, 8 (10)
  • [3] A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China
    Cheng, Shuiyuan
    Lang, Jianlei
    Zhou, Ying
    Han, Lihui
    Wang, Gang
    Chen, Dongsheng
    ATMOSPHERIC ENVIRONMENT, 2013, 79 : 308 - 316
  • [4] PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment
    Luo, Yuanyuan
    Zhou, Xuehua
    Zhang, Jingzhu
    Xiao, Yan
    Wang, Zhe
    Zhou, Yang
    Wang, Wenxing
    ATMOSPHERIC RESEARCH, 2018, 212 : 285 - 295
  • [5] PM2.5 Pollution in Xingtai, China: Chemical Characteristics, Source Apportionment, and Emission Control Measures
    Hu, Jun
    Wang, Han
    Zhang, Jingqiao
    Zhang, Meng
    Zhang, Hefeng
    Wang, Shulan
    Chai, Fahe
    ATMOSPHERE, 2019, 10 (03)
  • [6] Source apportionment for urban PM10 and PM2.5 in the Beijing area
    ZHANG Wei1
    2 Center for Atmospheric Environmental Study
    ChineseScienceBulletin, 2007, (05) : 608 - 615
  • [7] Source Apportionment and Influencing Factor Analysis of Residential Indoor PM2.5 in Beijing
    Yang, Yibing
    Liu, Liu
    Xu, Chunyu
    Li, Na
    Liu, Zhe
    Wang, Qin
    Xu, Dongqun
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (04)
  • [8] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhao, Zhipeng
    Lv, Sheng
    Zhang, Yihua
    Zhao, Qianbiao
    Shen, Lin
    Xu, Shi
    Yu, Jianqiang
    Hou, Jingwen
    Jin, Chengyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (08) : 7497 - 7511
  • [9] Source apportionment of PM2.5 and visibility in Jinan, China
    Cheng, Mengtian
    Tang, Guiqian
    Lv, Bo
    Li, Xingru
    Wu, Xinrui
    Wang, Yiming
    Wang, Yuesi
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 102 : 207 - 215
  • [10] Source apportionment for,urban PM10 and PM2.5 in the Beijing area
    Zhang Wei
    Guo JingHua
    Sun YeLe
    Yuan Hui
    Zhuang GuoShun
    Zhuang YaHui
    Hao ZhengPing
    CHINESE SCIENCE BULLETIN, 2007, 52 (05): : 608 - 615