Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries

被引:209
作者
Ji, Huiwen [1 ,2 ]
Urban, Alexander [1 ,2 ,3 ]
Kitchaev, Daniil A. [4 ]
Kwon, Deok-Hwang [1 ,2 ]
Artrith, Nongnuch [1 ,2 ]
Ophus, Colin [5 ]
Huang, Wenxuan [4 ]
Cai, Zijian [1 ,2 ]
Shi, Tan [1 ,2 ]
Kim, Jae Chul [2 ,6 ]
Kim, Haegyeom [2 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA
[6] Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
POSITIVE ELECTRODE MATERIAL; PAIR DISTRIBUTION FUNCTION; TOTAL-ENERGY CALCULATIONS; SHORT-RANGE ORDER; X-RAY; LATTICE-VIBRATIONS; CLUSTER MODEL; HIGH-CAPACITY; STATE; DIFFRACTION;
D O I
10.1038/s41467-019-08490-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structure plays a vital role in determining materials properties. In lithium ion cathode materials, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining lithium ion diffusion kinetics. In most conventional cathode materials that are well-ordered, the average structure as seen in diffraction dictates the lithium ion diffusion pathways. Here, we show that this is not the case in a class of recently discovered high-capacity lithium-excess rocksalts. An average structure picture is no longer satisfactory to understand the performance of such disordered materials. Cation short-range order, hidden in diffraction, is not only ubiquitous in these long-range disordered materials, but fully controls the local and macroscopic environments for lithium ion transport. Our discovery identifies a crucial property that has previously been overlooked and provides guidelines for designing and engineering cation-disordered cathode materials.
引用
收藏
页数:9
相关论文
共 58 条
[1]  
[Anonymous], ACC CHEM RES
[2]  
[Anonymous], 2010, ADV COMPUTING ELECT, DOI DOI 10.1007/978-1-4419-6533-2_12
[3]   The problem with determining atomic structure at the nanoscale [J].
Billinge, Simon J. L. ;
Levin, Igor .
SCIENCE, 2007, 316 (5824) :561-565
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2:: A joint X-ray and neutron diffraction, pair distribution function analysis and NMR study [J].
Bréger, J ;
Dupré, N ;
Chupas, PJ ;
Lee, PL ;
Proffen, T ;
Parise, JB ;
Grey, CP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (20) :7529-7537
[6]   Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries [J].
Chen, Ruiyong ;
Witte, Ralf ;
Heinzmann, Ralf ;
Ren, Shuhua ;
Mangold, Stefan ;
Hahn, Horst ;
Hempelmann, Rolf ;
Ehrenberg, Helmut ;
Indris, Sylvio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (11) :7695-7701
[7]   Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li+ Intercalation Storage [J].
Chen, Ruiyong ;
Ren, Shuhua ;
Knapp, Michael ;
Wang, Di ;
Witter, Raiker ;
Fichtner, Maximilian ;
Hahn, Horst .
ADVANCED ENERGY MATERIALS, 2015, 5 (09)
[8]   X-RAY MEASUREMENT OF ORDER IN SINGLE CRYSTALS OF (CU3AU) [J].
COWLEY, JM .
JOURNAL OF APPLIED PHYSICS, 1950, 21 (01) :24-29
[9]  
De Fontaine D., 1979, SOLID STATE PHYS, V34, P73
[10]   CLUSTER MODEL FOR TRANSITION-STATE AND ITS STUDY BY MEANS OF ELECTRON-DIFFRACTION .2. APPLICATION TO SOME PARTICULAR SYSTEMS [J].
DERIDDER, R ;
VANDYCK, D ;
VANTENDELOO, G ;
AMELINCKX, S .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1977, 40 (02) :669-683