Group Collaborative Representation for Image Set Classification

被引:29
|
作者
Liu, Bo [1 ,2 ]
Jing, Liping [1 ]
Li, Jia [1 ]
Yu, Jian [1 ]
Gittens, Alex [3 ]
Mahoney, Michael W. [4 ,5 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Agr Univ Hebei, Coll Informat Sci & Technol, Baoding 071000, Hebei, Peoples R China
[3] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[4] Univ Calif Berkeley, Int Comp Sci Inst, Berkeley, CA 94702 USA
[5] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94702 USA
基金
中国国家自然科学基金;
关键词
Image set classification; Group collaborative representation; Point-to-sets representation; Set-to-sets representation; FACE RECOGNITION; POINT;
D O I
10.1007/s11263-018-1088-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With significant advances in imaging technology, multiple images of a person or an object are becoming readily available in a number of real-life scenarios. In contrast to single images, image sets can capture a broad range of variations in the appearance of a single face or object. Recognition from these multiple images (i.e., image set classification) has gained significant attention in the area of computer vision. Unlike many existing approaches, which assume that only the images in the same set affect each other, this work develops a group collaborative representation (GCR) model which makes no such assumption, and which can effectively determine the hidden structure among image sets. Specifically, GCR takes advantage of the relationship between image sets to capture the inter- and intra-set variations, and it determines the characteristic subspaces of all the gallery sets. In these subspaces, individual gallery images and each probe set can be effectively represented via a self-representation learning scheme, which leads to increased discriminative ability and enhances robustness and efficiency of the prediction process. By conducting extensive experiments and comparing with state-of-the-art, we demonstrated the superiority of the proposed method on set-based face recognition and object categorization tasks.
引用
收藏
页码:181 / 206
页数:26
相关论文
共 50 条
  • [41] A review of image set classification
    Zhao, Zhong-Qiu
    Xu, Shou-Tao
    Liu, Dian
    Tian, Wei-Dong
    Jiang, Zhi-Da
    NEUROCOMPUTING, 2019, 335 : 251 - 260
  • [42] Kernel Collaborative Representation With Local Correlation Features for Hyperspectral Image Classification
    Su, Hongjun
    Zhao, Bo
    Du, Qian
    Du, Peijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1230 - 1241
  • [43] JOINT STATISTICAL AND SPATIAL SPARSE REPRESENTATION FOR ROBUST IMAGE AND IMAGE-SET CLASSIFICATION
    Cheng, Hao
    Wen, Bihan
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2411 - 2415
  • [44] Joint Metric Learning-Based Class-Specific Representation for Image Set Classification
    Gao, Xizhan
    Niu, Sijie
    Wei, Dong
    Liu, Xingrui
    Wang, Tingwei
    Zhu, Fa
    Dong, Jiwen
    Sun, Quansen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6731 - 6745
  • [45] Joint Metric Learning-Based Class-Specific Representation for Image Set Classification
    Gao, Xizhan
    Niu, Sijie
    Wei, Dong
    Liu, Xingrui
    Wang, Tingwei
    Zhu, Fa
    Dong, Jiwen
    Sun, Quansen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, : 6731 - 6745
  • [46] Locality-aware group sparse coding on Grassmann manifolds for image set classification
    Wei, Dong
    Shen, Xiaobo
    Sun, Quansen
    Gao, Xizhan
    Yan, Wenzhu
    NEUROCOMPUTING, 2020, 385 : 197 - 210
  • [47] Discriminative Collaborative Representation for Classification
    Wu, Yang
    Li, Wei
    Mukunoki, Masayuki
    Minoh, Michihiko
    Lao, Shihong
    COMPUTER VISION - ACCV 2014, PT IV, 2015, 9006 : 205 - 221
  • [48] Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary
    Li, Jiayi
    Zhang, Hongyan
    Huang, Yuancheng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3707 - 3719
  • [49] Collaborative Representation-Based Multiscale Superpixel Fusion for Hyperspectral Image Classification
    Jia, Sen
    Deng, Xianglong
    Zhu, Jiasong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7770 - 7784
  • [50] Image set face recognition based on extended low rank recovery and collaborative representation
    Zhanjie Song
    Kaiyan Cui
    Guangtao Cheng
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 71 - 80