Proof of the angular momentum-mass inequality for axisymmetric black holes

被引:0
作者
Dain, Sergio [1 ,2 ]
机构
[1] Univ Nacl Cordoba, Fac Math Astron & Fis, RA-5000 Cordoba, Argentina
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an extreme Kerr initial data set is a unique absolute minimum of the total mass in a (physically relevant) class of vacuum, maximal, asymptotically flat, axisymmetric data for Einstein equations with fixed angular momentum. These data represent non-stationary, axially symmetric black holes. As a consequence, we obtain that any data in this class satisfy the inequality root J <= m, where m and J are the total mass and angular momentum of spacetime.
引用
收藏
页码:33 / 67
页数:35
相关论文
共 46 条
[21]  
DAIN S, 2006, GRQC0606105
[22]   A variational principle for stationary, axisymmetric solutions of Einstein's equations [J].
Dain, Sergio .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6857-6871
[23]   Proof of the (local) angular momentum-mass inequality for axisymmetric black holes [J].
Dain, Sergio .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6845-6855
[24]  
ERNST FJ, 1968, PHYS REV, V167, P1175, DOI 10.1103/PhysRev.167.1175
[25]  
Evans L. C, 2010, Partial Differential Equations, V19
[26]   The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions [J].
Gibbons, G. W. ;
Holzegel, G. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6459-6478
[27]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[28]  
Hamilton R. S., 1975, Harmonic maps of manifolds with boundary, V471
[29]   COVARIANT CONSERVATION LAWS IN GENERAL RELATIVITY [J].
KOMAR, A .
PHYSICAL REVIEW, 1959, 113 (03) :934-936
[30]   REGULARITY OF HARMONIC MAPS WITH PRESCRIBED SINGULARITIES [J].
LI, YY ;
TIAN, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :1-30