A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation

被引:5
作者
Chaudhry, Jehanzeb Hameed [1 ]
Bond, Stephen D. [2 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Sandia Natl Labs, Appl Math & Applicat Grp, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Poisson-Boltzmann; Finite element; Least-squares; DISCONTINUOUS COEFFICIENTS; ELLIPTIC PROBLEMS; ELECTROSTATICS; APPROXIMATION; FOSLS;
D O I
10.1016/j.amc.2011.10.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The finite element methodology has become a standard framework for approximating the solution to the Poisson-Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux variables, and flexibility in the formulation, including the choice of elements. We explore the impact of weighting and the choice of elements on conditioning and adaptive refinement. In a series of numerical experiments, we compare the finite element methods when applied to the problem of computing the solvation free energy for realistic molecules of varying size. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4892 / 4902
页数:11
相关论文
共 37 条
[21]   The finite element approximation of the nonlinear Poisson-Boltzmann equation [J].
Chen, Long ;
Holst, Michael J. ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2298-2320
[22]   A mortar finite element approximation for the linear Poisson-Boltzmann equation [J].
Chen, WB ;
Shen, YF ;
Xia, Q .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (01) :11-23
[23]  
Cortis CM, 1997, J COMPUT CHEM, V18, P1591, DOI 10.1002/(SICI)1096-987X(199710)18:13<1591::AID-JCC3>3.0.CO
[24]  
2-M
[25]   ELECTROSTATICS IN BIOMOLECULAR STRUCTURE AND DYNAMICS [J].
DAVIS, ME ;
MCCAMMON, JA .
CHEMICAL REVIEWS, 1990, 90 (03) :509-521
[26]   Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures [J].
Feig, M ;
Onufriev, A ;
Lee, MS ;
Im, W ;
Case, DA ;
Brooks, CL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (02) :265-284
[27]   Treatment of charge singularities in implicit solvent models [J].
Geng, Weihua ;
Yu, Sining ;
Wei, Guowei .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11)
[28]  
Gouy M., 1910, J. Phys. Theor. Appl, V9, P457, DOI [10.1051/jphystap:019100090045700, DOI 10.1051/JPHYSTAP:019100090045700]
[29]  
Hiptmair R., 1997, ELECTRON T NUMER ANA, V6, P133
[30]  
Holst M, 2000, J COMPUT CHEM, V21, P1319, DOI 10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO