STRONGLY CONVEX FUNCTIONS, MOREAU ENVELOPES, AND THE GENERIC NATURE OF CONVEX FUNCTIONS WITH STRONG MINIMIZERS

被引:20
|
作者
Planiden, C. [1 ]
Wang, X. [1 ]
机构
[1] Univ British Columbia Okanagan, Math, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Attouch-Wets metric; Baire category; complete metric space; convex function; epi-convergence; epi-topology; generic set; meager set; Moreau envelope; proximal mapping; strong minimizer; strongly convex; EPI-DISTANCE TOPOLOGY; OPTIMIZATION PROBLEMS; MONOTONE-OPERATORS; SPACES;
D O I
10.1137/15M1035550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, using Moreau envelopes, we define a complete metric for the set of proper lower semicontinuous convex functions in a finite-dimensional space. Under this metric, the convergence of each sequence of convex functions is epi-convergence. We show that the set of strongly convex functions is dense but it is only of the first category. On the other hand, it is shown that the set of convex functions with strong minima is of the second category.
引用
收藏
页码:1341 / 1364
页数:24
相关论文
共 50 条
  • [31] Radical Convex Functions
    Mohammad Sababheh
    Hamid Reza Moradi
    Mediterranean Journal of Mathematics, 2021, 18
  • [32] Characterization of convex functions
    Tabor, Jacek
    Tabor, Jozef
    STUDIA MATHEMATICA, 2009, 192 (01) : 29 - 37
  • [33] On uniformly convex functions
    Grelier, G.
    Raja, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [34] On conditionally δ-convex functions
    Adam Najdecki
    Jacek Tabor
    Józef Tabor
    Acta Mathematica Hungarica, 2010, 128 : 131 - 138
  • [35] A construction of convex functions
    T. Konderla
    Mathematical Notes, 2012, 91 : 65 - 68
  • [36] α-fractionally convex functions
    Neelam Singha
    Chandal Nahak
    Fractional Calculus and Applied Analysis, 2020, 23 : 534 - 552
  • [37] A Construction of Convex Functions
    Konderla, T.
    MATHEMATICAL NOTES, 2012, 91 (1-2) : 65 - 68
  • [38] On conditionally δ-convex functions
    Najdecki, Adam
    Tabor, Jacek
    Tabor, Jozef
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 131 - 138
  • [39] On Inequalities for Convex Functions
    Bernal-Gonzalez, L.
    Jimenez-Rodriguez, P.
    Munoz-Fernandez, G. A.
    Seoane-Sepulveda, J. B.
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) : 437 - 448
  • [40] CONTINUITY OF CONVEX FUNCTIONS
    Polukhina, A., V
    Khmyleva, T. E.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (25): : 26 - 29