Thermal architecture of the Exoplanet Characterisation Observatory payload

被引:2
作者
Morgante, G. [1 ]
Terenzi, L. [1 ,9 ]
Eccleston, P. [2 ]
Bradshaw, T. [3 ]
Crook, M. [3 ]
Focardi, M. [4 ]
Hunt, T. [5 ]
Winter, B. [5 ]
Malaguti, G. [1 ]
Micela, G. [6 ]
Pace, E. [7 ]
Tinetti, G. [8 ]
机构
[1] INAF IASF Bologna, I-40129 Bologna, Italy
[2] RAL Space, STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[3] STFC Rutherford Appleton Lab, Dept Technol, Didcot OX11 0QX, Oxon, England
[4] INAF Osservatorio Astrofis Arcetri, I-51025 Florence, Italy
[5] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[6] INAF Osservatorio Astron Palermo, I-90134 Palermo, Italy
[7] Univ Florence, Dip Fis & Astron, I-50019 Florence, Italy
[8] UCL, Dept Phys & Astron, London WC1E 6BT, England
[9] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy
来源
SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE | 2014年 / 9143卷
关键词
Space instrumentation; thermal control; cryogenics; infrared; spectroscopy; exoplanets;
D O I
10.1117/12.2056800
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Exoplanet Characterisation Observatory (EChO) is a space project currently under study by ESA in the context of a medium class mission within the Cosmic Vision programme for launch post 2020. The EChO main scientific objectives are based on spectroscopy of transiting exoplanets over a wide range of wavelengths, from visible to mid-infrared. The high sensitivity requirements of the mission need an extremely stable thermo-mechanical platform. In this paper we describe the thermal architecture of the payload and discuss the main requirements that drive the design. The instrument is passively cooled to a temperature close to 45K, together with the telescope, to achieve the required sensitivity and photometric stability. Passive cooling is achieved by a V-Groove based design that exploits the L2 orbit favorable thermal conditions. The Visible and short-IR wavelength detectors are maintained at the operating temperature of 40K by a dedicated radiator coupled to cold space. The mid-IR channels require lower temperature references for both the detectors and part of the optical units. These colder stages are provided by an active cooling system based on a Neon Joule-Thomson cold end, fed by a mechanical compressor, able to reach temperatures <30K. The design has to be compliant with the severe requirements on thermal stability of the optical and detector units. The periodical perturbations due to orbital changes, to the cooling chain or to other internal instabilities make the temperature control one of the most critical issues of the whole architecture. The thermal control system design, based on a combination of passive and active solutions needed to maintain the required stability at the detector stages level is described. We report here about the baseline thermal architecture at the end of the Study Phase, together with the main trade-offs needed to enable the EChO exciting science in a technically feasible payload design. Thermal modeling results and preliminary performance predictions in terms of steady state and transient behavior are also discussed. This paper is presented on behalf of the EChO Consortium.
引用
收藏
页数:13
相关论文
共 7 条
[1]   Planck early results. II. The thermal performance of Planck [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Baker, M. ;
Balbi, A. ;
Banday, A. J. ;
Barreiro, R. B. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bhandari, P. ;
Bhatia, R. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borders, J. ;
Borrill, J. ;
Bouchet, F. R. ;
Bowman, B. ;
Bradshaw, T. ;
Breelle, E. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Cabella, P. ;
Camus, P. ;
Cantalupo, C. M. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Cayon, L. ;
Challinor, A. ;
Chamballu, A. ;
Chambelland, J. P. ;
Charra, J. ;
Charra, M. ;
Chiang, L. -Y. ;
Chiang, C. ;
Christensen, P. R. ;
Clements, D. L. ;
Collaudin, B. ;
Colombi, S. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. .
ASTRONOMY & ASTROPHYSICS, 2011, 536
[2]  
[Anonymous], 2013, ECHO YELL BOOK
[3]  
Eccleston P., 2013, ECHORP0001RAL
[4]  
Focardi M., 2014, EXPT ASTRONOMY UNPUB
[5]  
Morgante G., 2013, ECHOTN0001IASFBO
[6]  
Morgante G, 2014, EXPT ASTRONOMY ECHO
[7]  
Tinetti G, 2012, EXP ASTRON, V34, P311, DOI 10.1007/s10686-012-9303-4