Semi-supervised classification using bridging

被引:1
|
作者
Chan, Jason [1 ]
Koprinska, Irena [1 ]
Poon, Josiah [1 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
关键词
semi-supervised learning; bridging;
D O I
10.1142/S0218213008003972
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional supervised classification algorithms require a large number of labelled examples to perform accurately. Semi-supervised classification algorithms attempt to overcome this major limitation by also using unlabelled examples. Unlabelled examples have also been used to improve nearest neighbour text classification in a method called bridging. In this paper, we propose the use of bridging in a semi-supervised setting. We introduce a new bridging algorithm that can be used as a base classifier in most semi-supervised approaches. We empirically show that the classification performance of two semi-supervised algorithms, self-learning and co-training, improves with the use of our new bridging algorithm in comparison to using the standard classifier, JRipper. We propose a similarity metric for short texts and also study the performance of self-learning with a number of instance selection heuristics.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 50 条
  • [1] Text Classification Using Semi-Supervised Clustering
    Zhang, Wen
    Yoshida, Taketoshi
    Tang, Xijin
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 197 - 200
  • [2] Improving Semi-Supervised Classification using Clustering
    Arora, J.
    Tushir, M.
    Kashyap, R.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2020, 7 (25) : 1 - 9
  • [3] Using semi-supervised learning for question classification
    Tri, Nguyen Thanh
    Le, Nguyen Minh
    Shimazu, Akira
    COMPUTER PROCESSING OF ORIENTAL LANGUAGES, PROCEEDINGS: BEYOND THE ORIENT: THE RESEARCH CHALLENGES AHEAD, 2006, 4285 : 31 - +
  • [4] Semi-supervised classification using multiple clusterings
    Yu G.X.
    Feng L.
    Yao G.J.
    Wang J.
    Wang, J. (kingjun@swu.edu.cn), 1600, Izdatel'stvo Nauka (26): : 681 - 687
  • [5] Semi-supervised classification trees
    Levatic, Jurica
    Ceci, Michelangelo
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (03) : 461 - 486
  • [6] Watersheds for Semi-Supervised Classification
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 720 - 724
  • [7] Semi-supervised classification trees
    Jurica Levatić
    Michelangelo Ceci
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2017, 49 : 461 - 486
  • [8] Semi-supervised protein classification using cluster kernels
    Weston, J
    Leslie, C
    Ie, E
    Zhou, DY
    Elisseeff, A
    Noble, WS
    BIOINFORMATICS, 2005, 21 (15) : 3241 - 3247
  • [9] LANDSLIDE IMAGE CLASSIFICATION USING SEMI-SUPERVISED LEARNING
    He, Shi
    Jing, Haitao
    Tang, Hong
    Shen, Li
    Tao, Liangliang
    Cheng, Jiehai
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2643 - 2645
  • [10] Semi-supervised text classification using partitioned EM
    Cong, G
    Lee, WS
    Wu, HR
    Liu, B
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 482 - 493