A Variational Quantum Algorithm for Ordered SVD

被引:0
作者
Ryu, Ju-Young [1 ]
Jung, Jiwon [2 ]
Lee, Jaeyoung [2 ]
Gwon, Youngjune [2 ]
Rhee, June-Koo Kevin [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon, South Korea
[2] Samsung SDS, AI Res Ctr, Seoul, South Korea
[3] KAIST Inst IT Convergence & QuNova Comp, Daejeon, South Korea
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
关键词
singular value decomposition; variational quantum algorithm; parametric quantum circuit;
D O I
10.1109/GLOBECOM46510.2021.9685404
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Singular value decomposition (SVD) is fundamentally important and broadly useful in both quantum and classical computing. There are several quantum algorithms known for SVD. Variational quantum algorithms with parametric quantum circuits (PQC) are the most promising approach to find SVD with near-term quantum computers. This paper reports a new method for quantum SVD (QSVD) that finds the singular vectors ordered by the magnitude of singular values by adding extra CNOT gates and a new local cost function design. This ordering is important because the singular vectors with the larger singular values is more representative for the given information. The ordering property of this approach is investigated with the standard Iris dataset by numerical simulations of 4-qubit states. Methods for choosing appropriate choices for the cost function hyperparameter and cost function terms as well as an application example of a quantum encoder are also discussed.
引用
收藏
页数:5
相关论文
共 10 条
[1]  
Anis M. S., 2021, QISKIT OPEN SOURCE F
[2]   Quantum singular value decomposer [J].
Bravo-Prieto, Carlos ;
Garcia-Martin, Diego ;
Latorre, Jose, I .
PHYSICAL REVIEW A, 2020, 101 (06)
[3]   Cost function dependent barren plateaus in shallow parametrized quantum circuits [J].
Cerezo, M. ;
Sone, Akira ;
Volkoff, Tyler ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Classical-processing and quantum-processing signal separation methods for qubit uncoupling [J].
Deville, Yannick ;
Deville, Alain .
QUANTUM INFORMATION PROCESSING, 2012, 11 (06) :1311-1347
[5]  
Herasymenko Y., 2019, ARXIV190708157
[6]  
Kerenidis I., 2016, ARXIV160308675
[7]  
Lloyd S, 2014, NAT PHYS, V10, P631, DOI [10.1038/nphys3029, 10.1038/NPHYS3029]
[8]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[9]   Quantum singular-value decomposition of nonsparse low-rank matrices [J].
Rebentrost, Patrick ;
Steffens, Adrian ;
Marvian, Iman ;
Lloyd, Seth .
PHYSICAL REVIEW A, 2018, 97 (01)
[10]   Variational Quantum Singular Value Decomposition [J].
Wang, Xin ;
Song, Zhixin ;
Wang, Youle .
QUANTUM, 2021, 5 :1-23