LAGRANGIAN METHODS FOR A GENERAL INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH VARIABLE CAPILLARITY AND VISCOSITY COEFFICIENTS

被引:1
作者
Burtea, Cosmin [1 ]
Charve, Frederic [1 ]
机构
[1] Univ Paris Est Creteil, Lab Anal & Math Appl, UMR 8050, F-94010 Creteil, France
关键词
incompressible inhomogeneous viscous fluids; capillarity; Lagrangian variables and change of variables; Besov spaces; flow; COMPRESSIBLE FLUID MODELS; DIFFUSE INTERFACE MODEL; GLOBAL STRONG SOLUTION; WELL-POSEDNESS; CONVERGENCE; EXISTENCE; EQUATIONS;
D O I
10.1137/16M1101532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inhomogeneous incompressible Navier Stokes system endowed with a general capillary term. Thanks to recent methods based on Lagrangian change of variables, we obtain local well-posedness in critical Besov spaces (even if the integration index p not equal 2) and for variable viscosity and capillary terms. In the case of constant coefficients and for initial data that are perturbations of a constant state, we are able to prove that the lifespan goes to infinity as the capillary coefficient goes to zero, connecting our result to the global existence result obtained by Danchin and Mucha for the incompressible Navier Stokes system with constant coefficients.
引用
收藏
页码:3476 / 3495
页数:20
相关论文
共 27 条
[1]   STRONG WELL-POSEDNESS OF A DIFFUSE INTERFACE MODEL FOR A VISCOUS, QUASI-INCOMPRESSIBLE TWO-PHASE FLOW [J].
Abels, Helmut .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) :316-340
[2]   A quasi-incompressible diffuse interface model with phase transition [J].
Aki, Gonca L. ;
Dreyer, Wolfgang ;
Giesselmann, Jan ;
Kraus, Christiane .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (05) :827-861
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[5]   OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL VISCOSITY [J].
Burtea, Cosmin .
ANALYSIS & PDE, 2017, 10 (02) :439-479
[6]   Convergence of a low order non-local Navier-Stokes-Korteweg system: The order-parameter model [J].
Charve, Frederic .
ASYMPTOTIC ANALYSIS, 2016, 100 (3-4) :153-191
[7]   Local in time results for local and non-local capillary Navier-Stokes systems with large data [J].
Charve, Frederic .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2152-2193
[8]   On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model [J].
Charve, Frederic ;
Haspot, Boris .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (07) :1264-1323
[9]   Convergence of Capillary Fluid Models: from the Non-local to the Local Korteweg Model [J].
Charve, Frederic ;
Haspot, Boris .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (06) :2021-2059
[10]   Well-posedness of the compressible Navier-Stokes-Poisson system in the critical Besov spaces [J].
Chikami, Noboru ;
Ogawa, Takayoshi .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) :717-747