A few remarks about symplectic filling

被引:78
作者
Eliashberg, Y [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
contact manifold; symplectic filling; symplectic Lefschetz fibration; open book decomposition;
D O I
10.2140/gt.2004.8.277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any compact symplectic manifold (W, omega) with boundary embeds as a domain into a closed symplectic manifold, provided that there exists a contact plane xi on partial derivativeW which is weakly compatible with omega, i.e. the restriction omega\xi does not vanish and the contact orientation of partial derivativeW and its orientation as the boundary of the symplectic manifold W coincide. This result provides a useful tool for new applications by Ozsvath-Szabo of Seiberg-Witten Floer homology theories in three-dimensional topology and has helped complete the Kronheimer-Mrowka proof of Property P for knots.
引用
收藏
页码:277 / 293
页数:17
相关论文
共 29 条
  • [1] Akbulut S, 2002, INT MATH RES NOTICES, V2002, P769
  • [2] Lefschetz fibrations on compact Stein surfaces
    Akbulut, Selman
    Ozbagci, Burak
    [J]. GEOMETRY & TOPOLOGY, 2001, 5 : 319 - 334
  • [4] BOGOMOLOV F, CONT MATH, V207, P25
  • [5] Calabi E., 1970, PROBLEMS ANAL, P1
  • [6] ELIASHBERG Y, 1991, J DIFFER GEOM, V33, P233
  • [7] Eliashberg Y., 1996, INT MATH RES NOTICES, V2, P77, DOI DOI 10.1155/S1073792896000074.MR1383953
  • [8] ELIASHBERG Y., 1990, LONDON MATH SOC LECT, V151, P45
  • [9] ELIASHBERG Y, 1997, U LECT SERIES AMS, V13
  • [10] Eliashberg Y., 1990, Internat. J. Math., V1, P29, DOI [10.1142/S0129167X90000034, DOI 10.1142/S0129167X90000034]