Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

被引:254
作者
Lan, Liangyun [1 ]
Qiu, Chunlin [1 ]
Zhao, Dewen [1 ]
Gao, Xiuhua [1 ]
Du, Linxiu [1 ]
机构
[1] Northeastern Univ, State Key Lab Rolling Technol & Automat, Shenyang 110819, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 529卷
基金
中国国家自然科学基金;
关键词
Coarse grained heat affected zone; Low carbon bainitic steel; Martensite-austenite constituent; High misorientation grain boundary; Toughness; LOW-ALLOY STEEL; CLEAVAGE FRACTURE; ACICULAR FERRITE; MICROALLOYED STEELS; MARTENSITE; AUSTENITE; BEHAVIOR; DIFFRACTION; INITIATION; NIOBIUM;
D O I
10.1016/j.msea.2011.09.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 50 条
  • [31] Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel
    Lan, Liangyun
    Qiu, Chunlin
    Zhao, Dewen
    Gao, Xiuhua
    Du, Linxiu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 558 : 592 - 601
  • [32] Effect of Heat Input on Cleavage Crack Initiation of Simulated Coarse Grain Heat-affected Zone in Microalloyed Offshore Platform Steel
    Lu, Feng
    Cheng, Guang-ping
    Chai, Feng
    Pan, Tao
    Shi, Zhong-ran
    Su, Hang
    Yang, Cai-fu
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2016, 23 (10) : 1086 - 1095
  • [33] Visualization of Microstructural Factor Resisting the Cleavage-Crack Propagation in the Simulated Heat-Affected Zone of Bainitic Steel
    Terasaki, Hidenori
    Miyahara, Yu
    Ohata, Mitsuru
    Moriguchi, Koji
    Tomio, Yusaku
    Hayashi, Kotaro
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (12): : 5489 - 5493
  • [34] Microstructural evolutions and impact toughness in simulated welding heat affected zones for a high-strength carbide-free bainitic rail steel
    Bai, Wei
    Xu, Xiaojun
    Liu, Yaolan
    Liang, Yunxiao
    Shen, Yijie
    Han, Zhenyu
    Sheng, Zhendong
    Chen, Rong
    Zhu, Minhao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 880
  • [35] On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel
    Xi, Xiaohui
    Wang, Jinliang
    Chen, Liqing
    Wang, Zhaodong
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (05) : 617 - 627
  • [36] Effects of Small Ni Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steel
    Huang, Gang
    Wan, Xiangliang
    Wu, Kaiming
    Zhao, Huazhong
    Misra, Raja Devesh Kumarmr
    METALS, 2018, 8 (09):
  • [37] Effect of Cu addition on microstructure and impact toughness in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels
    Huang, G.
    Wan, X. L.
    Wu, K. M.
    Isayev, O.
    Hress, O.
    Rodionova, I.
    Shirzadi, A. A.
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (05) : 602 - 614
  • [38] The role of Cu and Al addition on the microstructure and fracture characteristics in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels with superior toughness
    Liu, Yu
    Li, Guangqiang
    Wan, Xiangliang
    Wang, Honghong
    Wu, Kaiming
    Misra, R. D. K.
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (15) : 1750 - 1764
  • [39] Microstructural engineering and strength-impact toughness prediction in ultra-low carbon bainitic steel
    Basiruddin, Md Sk
    Chakrabarti, Debalay
    Chatterjee, S.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (15) : 1910 - 1918
  • [40] Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel
    Li, Xueda
    Shang, Chengjia
    Ma, Xiaoping
    Gault, Baptiste
    Subramanian, S. V.
    Sun, Jianbo
    Misra, R. D. K.
    SCRIPTA MATERIALIA, 2017, 139 : 67 - 70