Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

被引:254
作者
Lan, Liangyun [1 ]
Qiu, Chunlin [1 ]
Zhao, Dewen [1 ]
Gao, Xiuhua [1 ]
Du, Linxiu [1 ]
机构
[1] Northeastern Univ, State Key Lab Rolling Technol & Automat, Shenyang 110819, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 529卷
基金
中国国家自然科学基金;
关键词
Coarse grained heat affected zone; Low carbon bainitic steel; Martensite-austenite constituent; High misorientation grain boundary; Toughness; LOW-ALLOY STEEL; CLEAVAGE FRACTURE; ACICULAR FERRITE; MICROALLOYED STEELS; MARTENSITE; AUSTENITE; BEHAVIOR; DIFFRACTION; INITIATION; NIOBIUM;
D O I
10.1016/j.msea.2011.09.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 50 条
  • [1] Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones
    Cui, Junjun
    Zhu, Wenting
    Chen, Zhenye
    Chen, Liqing
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (12): : 6258 - 6268
  • [2] MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB-REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL
    Lan Liangyun
    Qiu Chunlin
    Zhao Dewen
    Li Canming
    Gao Xiuhua
    Du Linxiu
    ACTA METALLURGICA SINICA, 2011, 47 (08) : 1046 - 1054
  • [3] Impact Toughness of Subzones in the Intercritical Heat-Affected Zone of Low-Carbon Bainitic Steel
    Li, Zhenshun
    Zhao, Xuemin
    Shan, Dongri
    MATERIALS, 2018, 11 (06):
  • [4] Effect of welding heat input on microstructural evolution and impact toughness of the simulated coarse-grained heat-affected zone of Q960 steel
    Cui, Bing
    Liu, Zhengwei
    Liu, Zheng
    Peng, Mengdu
    Shi, Mengyang
    Du, Quanbin
    Cong, Junqiang
    WELDING IN THE WORLD, 2023, 67 (01) : 235 - 249
  • [5] High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel
    Hu, Jun
    Du, Lin-Xiu
    Wang, Jian-Jun
    Xie, Hui
    Gao, Cai-Ru
    Misra, R. D. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 : 323 - 328
  • [6] The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel
    Wang, Jinliang
    Wang, Shuai
    Xi, Xiaohui
    Wang, Gui
    Chen, Liqing
    MATERIALS CHARACTERIZATION, 2021, 181 (181)
  • [7] Effect of Cr Content on Microstructure and Impact Toughness in the Simulated Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels
    Huang, Gang
    Wan, Xiang Liang
    Wu, Kai Ming
    STEEL RESEARCH INTERNATIONAL, 2016, 87 (11) : 1426 - 1434
  • [8] Effect of magnesium addition in low carbon steel part 2: toughness and microstructure of the simulated coarse-grained heat-affected zone
    Li, Xiaobing
    Zhang, Tongsheng
    Min, Yi
    Liu, Chengjun
    Jiang, Maofa
    IRONMAKING & STEELMAKING, 2019, 46 (03) : 301 - 311
  • [9] Effect of Heat Input on Microstructure and Toughness of Coarse Grained Heat Affected Zone of Q890 Steel
    Cui, Bing
    Peng, Yun
    Zhao, Lin
    Peng, Mengdu
    An, Tongbang
    Ma, Chengyong
    ISIJ INTERNATIONAL, 2016, 56 (01) : 132 - 139
  • [10] Effect of Initial Microstructure on the Toughness of Coarse-Grained Heat-Affected Zone in a Microalloyed Steel
    Shi, Minghao
    Di, Man
    Zhang, Jian
    Kannan, Rangasayee
    Li, Jing
    Yuan, Xiaoguang
    Li, Leijun
    MATERIALS, 2021, 14 (16)