Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl

被引:15
|
作者
Fang, Daoyuan [1 ]
Le, Wenjun [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric Boussinesq system; Regularity; Existence; Uniqueness; Decay estimates; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; REGULARITY CRITERION; PARTIAL VISCOSITY; WEAK SOLUTIONS; SYSTEM; DISSIPATION; DECAY;
D O I
10.1016/j.na.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the 3D axisymmetric Boussinesq system with nonzero swirl, we obtain the global existence and uniqueness of the strong solutions (u, rho), when parallel to r(d)u(0)(theta) parallel to(L) (3/1-d) d is an element of [0, 1], is sufficiently small. Furthermore, if u(0) is an element of L-3/2 (R-3) and ru(0)(theta) is an element of L-1(R-3) boolean AND L-2(R-3), we have the decay estimate parallel to u(t)parallel to(L2(R3)) + < t >(2) rho parallel to(t)parallel to(2)(L2(R3)) + < t >(2) parallel to u(theta)(t)parallel to(2)(L2(R3)) <= C < t >(-1/2), for any t > 0. At last, we get several continuation criteria. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 86
页数:39
相关论文
共 50 条
  • [41] A Blowup Criteria of Smooth Solutions to the 3D Boussinesq Equations
    Ben Omrane, Ines
    Gala, Sadek
    Thera, Michel
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):
  • [42] Regularity criterion for weak solutions to the 3D Boussinesq equations
    Wang, Yin-Xia
    Gao, Huimin
    SCIENCEASIA, 2012, 38 (02): : 196 - 200
  • [43] Global Existence and Asymptotic Stability of 3D Generalized Magnetohydrodynamic Equations
    Jiang, Kerui
    Liu, Zuhan
    Zhou, Ling
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
  • [44] Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system
    Ma, Hongyan
    Zhang, Qian
    APPLICABLE ANALYSIS, 2018, 97 (10) : 1814 - 1827
  • [45] A regularity criterion for the 3D Boussinesq equations
    Wu, Fan
    APPLICABLE ANALYSIS, 2022, 101 (08) : 3039 - 3047
  • [46] Small global solutions to the damped two-dimensional Boussinesq equations
    Adhikari, Dhanapati
    Cao, Chongsheng
    Wu, Jiahong
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) : 3594 - 3613
  • [47] Global regularity for the 3D Hall-MHD equations with low regularity axisymmetric data
    Li, Zhouyu
    Liu, Pan
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 173 - 195
  • [48] Decay for the 3D anisotropic MHD-Boussinesq equations near the hydrostatic equilibrium
    Wang, Wenjuan
    Jia, Yan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [49] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Hassainia, Zineb
    ANNALES HENRI POINCARE, 2022, 23 (08): : 2877 - 2917
  • [50] Large time decay of solutions for the 3D magneto-micropolar equations
    Li, Ming
    Shang, Haifeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 479 - 496