Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl

被引:15
|
作者
Fang, Daoyuan [1 ]
Le, Wenjun [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric Boussinesq system; Regularity; Existence; Uniqueness; Decay estimates; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; REGULARITY CRITERION; PARTIAL VISCOSITY; WEAK SOLUTIONS; SYSTEM; DISSIPATION; DECAY;
D O I
10.1016/j.na.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the 3D axisymmetric Boussinesq system with nonzero swirl, we obtain the global existence and uniqueness of the strong solutions (u, rho), when parallel to r(d)u(0)(theta) parallel to(L) (3/1-d) d is an element of [0, 1], is sufficiently small. Furthermore, if u(0) is an element of L-3/2 (R-3) and ru(0)(theta) is an element of L-1(R-3) boolean AND L-2(R-3), we have the decay estimate parallel to u(t)parallel to(L2(R3)) + < t >(2) rho parallel to(t)parallel to(2)(L2(R3)) + < t >(2) parallel to u(theta)(t)parallel to(2)(L2(R3)) <= C < t >(-1/2), for any t > 0. At last, we get several continuation criteria. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 86
页数:39
相关论文
共 50 条
  • [31] WILD SOLUTIONS OF THE 3D AXISYMMETRIC EULER EQUATIONS
    Brkic, Patrick
    Wiedemann, Emil
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2025, 57 (01) : 996 - 1020
  • [32] REMARK ON EXPONENTIAL DECAY-IN-TIME OF GLOBAL STRONG SOLUTIONS TO 3D INHOMOGENEOUS INCOMPRESSIBLE MICROPOLAR EQUATIONS
    Ye, Zhuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6725 - 6743
  • [33] Global Stability of Large Solutions to the 3D Compressible Navier-Stokes Equations
    He, Lingbing
    Huang, Jingchi
    Wang, Chao
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (03) : 1167 - 1222
  • [34] Blow-up criteria for 3D Boussinesq equations in the multiplier space
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1820 - 1824
  • [35] Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces
    Sun, Xiaochun
    Wu, Yulian
    Xu, Gaoting
    AIMS MATHEMATICS, 2023, 8 (11): : 27065 - 27079
  • [36] On the regularity criterion of strong solutions to the 3D Boussinesq equations
    Gala, Sadek
    APPLICABLE ANALYSIS, 2011, 90 (12) : 1829 - 1835
  • [37] Blow-up criteria of smooth solutions to the 3D Boussinesq equations
    Qin, Yuming
    Yang, Xinguang
    Wang, Yu-Zhu
    Liu, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 278 - 285
  • [38] Regularity criteria of axisymmetric weak solutions to the 3D MHD equations
    Guo, Zhengguang
    Wang, Yu
    Li, Yeping
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [39] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [40] Pullback D-Attractors of the 3D Boussinesq Equations with Damping
    Li, Chaofan
    Liu, Hui
    Xin, Jie
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1343 - 1366