Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl

被引:15
|
作者
Fang, Daoyuan [1 ]
Le, Wenjun [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric Boussinesq system; Regularity; Existence; Uniqueness; Decay estimates; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; REGULARITY CRITERION; PARTIAL VISCOSITY; WEAK SOLUTIONS; SYSTEM; DISSIPATION; DECAY;
D O I
10.1016/j.na.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the 3D axisymmetric Boussinesq system with nonzero swirl, we obtain the global existence and uniqueness of the strong solutions (u, rho), when parallel to r(d)u(0)(theta) parallel to(L) (3/1-d) d is an element of [0, 1], is sufficiently small. Furthermore, if u(0) is an element of L-3/2 (R-3) and ru(0)(theta) is an element of L-1(R-3) boolean AND L-2(R-3), we have the decay estimate parallel to u(t)parallel to(L2(R3)) + < t >(2) rho parallel to(t)parallel to(2)(L2(R3)) + < t >(2) parallel to u(theta)(t)parallel to(2)(L2(R3)) <= C < t >(-1/2), for any t > 0. At last, we get several continuation criteria. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 86
页数:39
相关论文
共 50 条