Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl

被引:15
|
作者
Fang, Daoyuan [1 ]
Le, Wenjun [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric Boussinesq system; Regularity; Existence; Uniqueness; Decay estimates; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; REGULARITY CRITERION; PARTIAL VISCOSITY; WEAK SOLUTIONS; SYSTEM; DISSIPATION; DECAY;
D O I
10.1016/j.na.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the 3D axisymmetric Boussinesq system with nonzero swirl, we obtain the global existence and uniqueness of the strong solutions (u, rho), when parallel to r(d)u(0)(theta) parallel to(L) (3/1-d) d is an element of [0, 1], is sufficiently small. Furthermore, if u(0) is an element of L-3/2 (R-3) and ru(0)(theta) is an element of L-1(R-3) boolean AND L-2(R-3), we have the decay estimate parallel to u(t)parallel to(L2(R3)) + < t >(2) rho parallel to(t)parallel to(2)(L2(R3)) + < t >(2) parallel to u(theta)(t)parallel to(2)(L2(R3)) <= C < t >(-1/2), for any t > 0. At last, we get several continuation criteria. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 86
页数:39
相关论文
共 50 条
  • [1] Global Axisymmetric Solutions to the 3D MHD Equations with Nonzero Swirl
    Wang, Peng
    Guo, Zhengguang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)
  • [2] Global Well-Posedness of 3d Axisymmetric MHD-Boussinesq System with Nonzero Swirl
    Liu, Qiao
    Yang, Yixin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [3] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Sun, Jinyi
    Liu, Chunlan
    Yang, Minghua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 589 - 603
  • [4] A regularity criterion for the 3D axisymmetric Boussinesq equations with non-zero swirl
    Wang, Peng
    Guo, Zhengguang
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (05)
  • [5] Large global solutions to 3D Boussinesq equations slowly varying in one direction
    Hao, Xiaonan
    Li, Zhen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [6] GLOBAL SMOOTH SOLUTION FOR THE MODIFIED ANISOTROPIC 3D BOUSSINESQ EQUATIONS WITH DAMPING
    Lin, Lin
    Liu, Hui
    Sun, Cheng-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2171 - 2195
  • [7] Global well-posedness and long time decay of the 3D Boussinesq equations
    Liu, Hui
    Gao, Hongjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8649 - 8665
  • [8] On the stability of global solutions to the 3D Boussinesq system
    Liu, Xiaopan
    Li, Yuxiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 580 - 591
  • [9] The regularity criteria of weak solutions to 3D axisymmetric incompressible Boussinesq equations
    Dong, Yu
    Huang, Yaofang
    Li, Li
    Lu, Qing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2387 - 2397
  • [10] A regularity criterion of weak solutions to the 3D Boussinesq equations
    Alghamdi, Ahmad Mohammed
    Gala, Sadek
    Ragusa, Maria Alessandra
    AIMS MATHEMATICS, 2017, 2 (03): : 451 - U208