Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction

被引:30
|
作者
Jimenez, Fernando [1 ]
Palma, Jose [1 ]
Sanchez, Gracia [1 ]
Marin, David [1 ]
Francisco Palacios, M. D. [1 ]
Lucia Lopez, M. D. [2 ]
机构
[1] Univ Murcia, Fac Comp Sci, Artificial Intelligence & Knowledge Engn Grp, Murcia, Spain
[2] Univ Hosp Getafe, Madrid, Spain
关键词
Feature selection; Multi-objective evolutionary algorithms; Multivariate time series; Antibiotic resistance forecasting; Multiple criteria decision making; EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; STAPHYLOCOCCUS-AUREUS INFECTIONS; COMMUNITY-ACQUIRED PNEUMONIA; DIFFERENTIAL EVOLUTION; METHICILLIN-RESISTANT; AVERAGE MODEL; INFLUENZA; ALGORITHM; EPIDEMIOLOGY; CLASSIFICATION;
D O I
10.1016/j.artmed.2020.101818
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Antimicrobial resistance has become one of the most important health problems and global action plans have been proposed globally. Prevention plays a key role in these actions plan and, in this context, we propose the use of Artificial Intelligence, specifically Time Series Forecasting techniques, for predicting future outbreaks of Methicillin-resistant Staphylococcus aureus (MRSA). Infection incidence forecasting is approached as a Feature Selection based Time Series Forecasting problem using multivariate time series composed of incidence of Staphylococcus aureus Methicillin-sensible and MRSA infections, influenza incidence and total days of therapy of both of Levofloxacin and Oseltamivir antimicrobials. Data were collected from the University Hospital of Getafe (Spain) from January 2009 to January 2018, using months as time granularity. The main contributions of the work are the following: the applications of wrapper feature selection methods where the search strategy is based on multi-objective evolutionary algorithms (MOEA) along with evaluators based on the most powerful state-of-the-art regression algorithms. The performance of the feature selection methods has been measured using the root mean square error (RMSE) and mean absolute error (MAE) performance metrics. A novel multi-criteria decision-making process is proposed in order to select the most satisfactory forecasting model, using the metrics previously mentioned, as well as the slopes of model prediction lines in the 1, 2 and 3 steps-ahead predictions. The multi-criteria decision-making process is applied to the best models resulting from a ranking of databases and regression algorithms obtained through multiple statistical tests. Finally, to the best of our knowledge, this is the first time that a feature selection based multivariate time series methodology is proposed for antibiotic resistance forecasting. Final results show that the best model according to the proposed multi-criteria decision making process provides a RMSE = (0.1349, 0.1304, 0.1325) and a MAE = (0.1003, 0.096, 0.0987) for 1, 2, and 3 steps-ahead predictions.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] TFEformer: Temporal Feature Enhanced Transformer for Multivariate Time Series Forecasting
    Ying, Chenhao
    Lu, Jiangang
    IEEE ACCESS, 2024, 12 : 153694 - 153708
  • [22] Time-Series Feature Selection for Solar Flare Forecasting
    Velanki, Yagnashree
    Hosseinzadeh, Pouya
    Boubrahimi, Soukaina Filali
    Hamdi, Shah Muhammad
    UNIVERSE, 2024, 10 (09)
  • [23] Load Prediction Based on Multivariate Time Series Forecasting for Energy Consumption and Behavioral Analytics
    Khan, Mahnoor
    Javaid, Nadeem
    Iqbal, Muhammad Nabeel
    Bilal, Muhammad
    Zaidi, Syed Farhan Ali
    Raza, Rashid Ali
    COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS, 2019, 772 : 305 - 316
  • [24] Forecasting multivariate time series
    Athanasopoulos, George
    Vahid, Farshid
    INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) : 680 - 681
  • [25] Multivariate time series prediction with multi-feature analysis
    Chen, Junfeng
    Guan, Azhu
    Du, Jingjing
    Ayush, Altangerel
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [26] Developing a deep learning framework with two-stage feature selection for multivariate financial time series forecasting
    Niu, Tong
    Wang, Jianzhou
    Lu, Haiyan
    Yang, Wendong
    Du, Pei
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 148
  • [27] Chaotic Time Series Prediction with Feature Selection Evolution
    Landassuri-Moreno, V.
    Raymundo Marcial-Romero, J.
    Montes-Venegas, A.
    Ramos, Marco A.
    2011 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2011), 2011, : 71 - 76
  • [28] Temporal Feature Selection for Time-series Prediction
    Hido, Shohei
    Morimura, Tetsuro
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3557 - 3560
  • [29] A WSFA-based adaptive feature extraction method for multivariate time series prediction
    Yang, Shuang
    Li, Wenjing
    Qiao, Junfei
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (04): : 1959 - 1972
  • [30] A WSFA-based adaptive feature extraction method for multivariate time series prediction
    Shuang Yang
    Wenjing Li
    Junfei Qiao
    Neural Computing and Applications, 2024, 36 : 1959 - 1972