Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes

被引:81
作者
Giordano, Lorena [1 ]
Roizard, Denis [1 ]
Favre, Eric [1 ]
机构
[1] Univ Lorraine, ENSIC, UMR 7274, LRGP, 1 Rue Grandville,BP 20451, F-54001 Nancy, France
关键词
Carbon capture; Membrane separation; Chemical absorption; Life cycle assessment; Environmental impacts; CARBON-DIOXIDE CAPTURE; ENVIRONMENTAL ASSESSMENT; POWER-PLANTS; STORAGE; MICROPOROSITY; NORMALIZATION; TECHNOLOGIES; TRANSPORT; POLYMER; SYSTEMS;
D O I
10.1016/j.ijggc.2017.11.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon capture technologies are regarded as promising options to mitigate CO2 emissions from large point sources, such as power generation facilities and energy intensive industries. However, CO2 capture technologies have several environmental impacts, from the system infrastructure production stage to the end of their lifetime, because of the consumption of resources in the form of materials and energy, as well as the formation of chemical by-products. All these aspects should be taken into account in order to assess and compare the real environmental sustainability of the CO2 capture processes. It is well established that life cycle assessment (LCA) represents a powerful tool to evaluate the most significant environmental impacts of CO2 capture technologies throughout their lifetimes. Using LCA methodology, this study aimed to compare life cycle emissions of membrane separation and chemical absorption processes for the post-combustion capture of one tonne of CO2 from a subcritical coal-fired power plant. Environmental impacts were evaluated considering a hybrid approach for the life cycle inventory, combining physical and economic input data. Simulation results highlighted that life cycle emissions of CO2 capture based on membrane separation process were strongly related to membrane material and thickness of the dense active layer, influencing the net power consumption and membrane area requirement. Membrane configurations investigated allowed to reduce to such an extent environmental impacts compared to CO2 capture based on monoethanoalmine (MEA) absorption. The greatest reduction potential was observed for human toxicity and impacts on freshwater and marine ecosystems, because of the elimination of environmental concerns related to solvent manufacturing and disposal of amine reclaimer wastes.
引用
收藏
页码:146 / 163
页数:18
相关论文
共 50 条
  • [31] Screening tests of new hybrid solvents for the post-combustion CO2 capture process by chemical absorption
    Gervasi, Julien
    Dubois, Lionel
    Thomas, Diane
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1854 - 1862
  • [32] Techno-economic aspects of the post-combustion CO2 capture processes
    Prasad, P. S. Sai
    Raghavan, K. V.
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2012, 51 (9-10): : 1201 - 1213
  • [33] A novel post-combustion CO2 capture design integrated with an Organic Rankine Cycle (ORC)
    Malekli, Mohammadreza
    Aslani, Alireza
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 168 : 942 - 952
  • [34] The Advances of Post-Combustion CO2 Capture with Chemical Solvents: Review and Guidelines
    Wu, Xiaomei
    Yu, Yunsong
    Qin, Zhen
    Zhang, Zaoxiao
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1339 - 1346
  • [36] Assessment of solid sorbents as a competitive post-combustion CO2 capture technology
    Glier, Justin C.
    Rubin, Edward S.
    GHGT-11, 2013, 37 : 65 - 72
  • [37] Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture
    Hosseini, Seyed Mohsen
    Aslani, Alireza
    Kasaeian, Alibakhsh
    ENERGY REPORTS, 2023, 9 : 414 - 436
  • [38] Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications
    Ul Mulk, Waqad
    Ali, Syed Awais
    Shah, Syed Nasir
    Shah, Mansoor Ul Hassan
    Zhang, Qi-Jun
    Younas, Mohammad
    Fatehizadeh, Ali
    Sheikh, Mahdi
    Rezakazemi, Mashallah
    JOURNAL OF CO2 UTILIZATION, 2023, 75
  • [39] Post-combustion carbon capture by membrane separation, Review
    Karaszova, Magda
    Zach, Boleslav
    Petrusova, Zuzana
    Cervenka, Vojtech
    Bobak, Marek
    Syc, Michal
    Izak, Pavel
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 238
  • [40] Study of mass transfer correlations for intensified absorbers in post-combustion CO2 capture based on chemical absorption
    Oko, Eni
    Wang, Meihong
    Ramshaw, Colin
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1630 - 1636