The Prabhakar or three parameter Mittag-Leffler function: Theory and application

被引:174
作者
Garra, Roberto [1 ]
Garrappa, Roberto [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 56卷
关键词
Prabhakar function; Mittag-Leffler function; Asymptotic expansion; Fractional calculus; Prabhakar derivative; Havriliak-Negami model; Nonlinear heat equation; DIFFERENTIAL-EQUATIONS; ANOMALOUS RELAXATION; ASYMPTOTIC-EXPANSION; MODELS; REPRESENTATION; OPERATORS;
D O I
10.1016/j.cnsns.2017.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Prabhakar function (namely, a three parameter Mittag-Leffler function) is investigated. This function plays a fundamental role in the description of the anomalous dielectric properties in disordered materials and heterogeneous systems manifesting simultaneous non-locality and nonlinearity and, more generally, in models of Havriliak-Negami type. After reviewing some of the main properties of the function, the asymptotic expansion for large arguments is investigated in the whole complex plane and, with major emphasis, along the negative semi-axis. Fractional integral and derivative operators of Prabhakar type are hence considered and some nonlinear heat conduction equations with memory involving Prabhakar derivatives are studied. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 329
页数:16
相关论文
共 50 条
  • [31] When is a Mittag-Leffler function a Nussbaum function?
    Li, Yan
    Chen, YangQuan
    AUTOMATICA, 2009, 45 (08) : 1957 - 1959
  • [32] Asymptotics for a variant of the Mittag-Leffler function
    Gerhold, Stefan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (06) : 397 - 403
  • [33] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [34] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58
  • [35] PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION
    Bansal, Deepak
    Orhan, Halit
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 423 - 431
  • [36] APPLICATION OF MITTAG-LEFFLER FUNCTION ON CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS
    Murugusundaramoorthy, G.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (04): : 1491 - 1502
  • [37] The Mittag-Leffler Fitting of the Phillips Curve
    Skovranek, Tomas
    MATHEMATICS, 2019, 7 (07)
  • [38] Mittag-Leffler function and its application to viscoelastic stress relaxation
    Chen Hong-Shan
    Li Ming-Ming
    Kang Yong-Gang
    Zhang Su-Ling
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2008, 29 (06): : 1271 - 1275
  • [39] Generalized Mittag-Leffler stability of nonlinear fractional regularized Prabhakar differential systems
    Eshaghi, Shiva
    Ansari, Alireza
    Ghaziani, Reza Khoshsiar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 665 - 678
  • [40] Computation of the inverse Mittag-Leffler function and its application to modeling ultraslow dynamics
    Liang, Yingjie
    Yu, Yue
    Magin, Richard L.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 439 - 452