The Prabhakar or three parameter Mittag-Leffler function: Theory and application

被引:174
|
作者
Garra, Roberto [1 ]
Garrappa, Roberto [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 56卷
关键词
Prabhakar function; Mittag-Leffler function; Asymptotic expansion; Fractional calculus; Prabhakar derivative; Havriliak-Negami model; Nonlinear heat equation; DIFFERENTIAL-EQUATIONS; ANOMALOUS RELAXATION; ASYMPTOTIC-EXPANSION; MODELS; REPRESENTATION; OPERATORS;
D O I
10.1016/j.cnsns.2017.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Prabhakar function (namely, a three parameter Mittag-Leffler function) is investigated. This function plays a fundamental role in the description of the anomalous dielectric properties in disordered materials and heterogeneous systems manifesting simultaneous non-locality and nonlinearity and, more generally, in models of Havriliak-Negami type. After reviewing some of the main properties of the function, the asymptotic expansion for large arguments is investigated in the whole complex plane and, with major emphasis, along the negative semi-axis. Fractional integral and derivative operators of Prabhakar type are hence considered and some nonlinear heat conduction equations with memory involving Prabhakar derivatives are studied. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 329
页数:16
相关论文
共 50 条
  • [21] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [22] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [23] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [24] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [25] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [26] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [27] Properties of the Mittag-Leffler Relaxation Function
    Mário N. Berberan-Santos
    Journal of Mathematical Chemistry, 2005, 38 : 629 - 635
  • [28] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [29] On certain integrals involving (p, k)-Mittag-Leffler function
    Singh, Gurmej
    Chand, Mehar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [30] A Comprehensive Study on the Zeros of the Two-Parameter Mittag-Leffler Function
    Abooali, Farnoosh
    Akbarfam, Aliasghar Jodayree
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01): : 1 - 23