The Prabhakar or three parameter Mittag-Leffler function: Theory and application

被引:174
|
作者
Garra, Roberto [1 ]
Garrappa, Roberto [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 56卷
关键词
Prabhakar function; Mittag-Leffler function; Asymptotic expansion; Fractional calculus; Prabhakar derivative; Havriliak-Negami model; Nonlinear heat equation; DIFFERENTIAL-EQUATIONS; ANOMALOUS RELAXATION; ASYMPTOTIC-EXPANSION; MODELS; REPRESENTATION; OPERATORS;
D O I
10.1016/j.cnsns.2017.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Prabhakar function (namely, a three parameter Mittag-Leffler function) is investigated. This function plays a fundamental role in the description of the anomalous dielectric properties in disordered materials and heterogeneous systems manifesting simultaneous non-locality and nonlinearity and, more generally, in models of Havriliak-Negami type. After reviewing some of the main properties of the function, the asymptotic expansion for large arguments is investigated in the whole complex plane and, with major emphasis, along the negative semi-axis. Fractional integral and derivative operators of Prabhakar type are hence considered and some nonlinear heat conduction equations with memory involving Prabhakar derivatives are studied. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 329
页数:16
相关论文
共 50 条
  • [1] NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS
    Garrappa, Roberto
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) : 1350 - 1369
  • [2] Projectile motion using three parameter Mittag-Leffler function calculus
    Bokhari, Ahmed
    Belgacem, Rachid
    Kumar, Sunil
    Baleanu, Dumitru
    Djilali, Salih
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 195 (22-30) : 22 - 30
  • [3] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [4] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [5] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [6] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [7] On Mittag-Leffler type function and applications
    Saigo, M
    Kilbas, AA
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (1-2) : 97 - 112
  • [8] Battery Modeling with Mittag-Leffler Function
    Abdelhafiz, Shahenda M.
    Fouda, Mohammed E.
    Radwan, Ahmed G.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] On the Numerical Computation of the Mittag-Leffler Function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Machado, Jose Tenreiro
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (06) : 725 - 736
  • [10] The calculation of the Mittag-Leffler function
    Saenko, V. V.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) : 1367 - 1394