Bottom-up device fabrication via the seeded growth of polymer-based nanowires

被引:16
|
作者
El-Zubir, Osama [1 ]
Kynaston, Emily L. [2 ]
Gwyther, Jessica [2 ]
Nazemi, Ali [2 ]
Gould, Oliver E. C. [2 ]
Whittell, George R. [2 ]
Horrocks, Benjamin R. [1 ]
Manners, Ian [2 ,3 ]
Houlton, Andrew [1 ]
机构
[1] Newcastle Univ, Sch Nat & Environm Sci, Chem Nanosci Labs, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[3] Univ Victoria, Dept Chem, Victoria, BC V8W 3V6, Canada
基金
英国工程与自然科学研究理事会;
关键词
MONODISPERSE CYLINDRICAL MICELLES; BLOCK-COPOLYMER MICELLES; CONTROLLED LENGTH; ELECTROCHEMICAL GROWTH; CO-MICELLES; FUNCTIONALIZATION; ARCHITECTURES; THIOPHENE; PEDOT;
D O I
10.1039/d0sc02011g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bottom-up assembly of nanoelectronic devices from molecular building blocks is a target of widespread interest. Herein we demonstrate anin situseeded growth approach to produce a nanowire-based electrical device. This exploits the chemisorption of block terpolymer-based seed fibres with a thiophene-functionalised corona onto metal electrodes as the initial step. We then use these surface-bound seeds to initiate the growth of well-defined one-dimensional fibre-like micellesviathe seeded growth method known as "Living crystallisation-driven self-assembly'' and demonstrate that they are capable of spanning an interelectrode gap. Finally, a chemical oxidation step was used to transform the nanofibres into nanowires to generate a two-terminal device. This seeded growth approach of growing well-defined circuit elements provides a useful new design tool for bottom-up device fabrication.
引用
收藏
页码:6222 / 6228
页数:7
相关论文
共 50 条
  • [21] Bottom-up growth of nanotube multilayers
    Borchardt, John K.
    MATERIALS TODAY, 2005, 8 (12) : 13 - 13
  • [22] Conjugated polymer-based electrochromics: materials, device fabrication and application prospects
    Neo, Wei Teng
    Ye, Qun
    Chua, Soo-Jin
    Xu, Jianwei
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (31) : 7364 - 7376
  • [23] Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device
    Abramson, AR
    Kim, WC
    Huxtable, ST
    Yan, HQ
    Wu, YY
    Majumdar, A
    Tien, CL
    Yang, PD
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) : 505 - 513
  • [24] Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique
    Ahmad, Pervaiz
    Khandaker, Mayeen Uddin
    Muhammad, Nawshad
    Khan, Ghulamullah
    Rehman, Fida
    Khan, Amir Sada
    Ullah, Zahoor
    Khan, Abdulhameed
    Ali, Hazrat
    Ahmed, Syed Muzamil
    Khan, M. Abdul Rauf
    Iqbal, Javed
    Khan, Ayaz Arif
    Irshad, Muhammad Imran
    CERAMICS INTERNATIONAL, 2019, 45 (17) : 22765 - 22768
  • [25] Bottom-up fabrication of graphene on Ru(0001) via molecular self-assembly
    Cai, Yiliang
    Zhang, Hanjie
    Song, Junjie
    Zhang, Yuxi
    Rehman, A. U.
    He, Pimo
    NANOTECHNOLOGY, 2015, 26 (29)
  • [26] Bottom-up nano-integration route for modified carbon nanotube spintronic device fabrication
    Mosse, I. S.
    de Sousa, A. S.
    Ncube, S.
    Coleman, C.
    Bhattacharyya, S.
    Irzhak, A.
    Gratowski, S.
    Koledov, V.
    METANANO 2019, 2020, 1461
  • [27] Microfluidics Fabrication of Soft Microtissues and Bottom-Up Assembly
    Ma, Shaohua
    Mukherjee, Nobina
    ADVANCED BIOSYSTEMS, 2018, 2 (09)
  • [29] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    NATURE, 2010, 466 (7305) : 470 - 473
  • [30] Development of Bumpless Stacking With Bottom-Up TSV Fabrication
    Lee, Shih-Wei
    Chen, Kuan-Neng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (04) : 1660 - 1665