Special Issue: Geostatistics and Machine Learning

被引:12
|
作者
De Iaco, Sandra [1 ]
Hristopulos, Dionissios T. [2 ]
Lin, Guang [3 ,4 ]
机构
[1] Univ Salento, Dept Econ Sci, Sect Math & Stat, Lecce, Italy
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Geostatistics; Statistical learning; Machine learning; Spatial process; Gaussian process regression; SPACE;
D O I
10.1007/s11004-022-09998-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Recent years have seen a steady growth in the number of papers that apply machine learning methods to problems in the earth sciences. Although they have different origins, machine learning and geostatistics share concepts and methods. For example, the kriging formalism can be cast in the machine learning framework of Gaussian process regression. Machine learning, with its focus on algorithms and ability to seek, identify, and exploit hidden structures in big data sets, is providing new tools for exploration and prediction in the earth sciences. Geostatistics, on the other hand, offers interpretable models of spatial (and spatiotemporal) dependence. This special issue on Geostatistics and Machine Learning aims to investigate applications of machine learning methods as well as hybrid approaches combining machine learning and geostatistics which advance our understanding and predictive ability of spatial processes.
引用
收藏
页码:459 / 465
页数:7
相关论文
共 50 条
  • [1] Special Issue: Geostatistics and Machine Learning
    Sandra De Iaco
    Dionissios T. Hristopulos
    Guang Lin
    Mathematical Geosciences, 2022, 54 : 459 - 465
  • [2] Preface to special issue "GeoMLA Conference - Geostatistics and Machine Learning Applications in Climate and Environmental Sciences"
    Tadic, Melita Percec
    Kilibarda, Milan
    GEOFIZIKA, 2018, 34 (02) : 223 - 224
  • [3] A Special Issue on Petroleum Geostatistics
    Azevedo, Leonardo
    Eidsvik, Jo
    MATHEMATICAL GEOSCIENCES, 2021, 53 (03) : 301 - 303
  • [4] A Special Issue on Petroleum Geostatistics
    Leonardo Azevedo
    Jo Eidsvik
    Mathematical Geosciences, 2021, 53 : 301 - 303
  • [5] Special issue: Geostatistics - Preface
    Olea, RA
    MATHEMATICAL GEOLOGY, 1996, 28 (04): : 383 - 384
  • [6] Special Issue on Environmental Geostatistics
    J. Jaime Gómez-Hernández
    Celine Scheidt
    Mathematical Geosciences, 2013, 45 : 507 - 509
  • [7] Special Issue: Geostatistics Toronto 2021
    Avalos, Sebastian
    Ortiz, Julian M.
    Srivastava, R. Mohan
    MATHEMATICAL GEOSCIENCES, 2023, 55 (05) : 607 - 608
  • [8] Special Issue on Geostatistics for Environmental Applications
    Amilcar Soares
    Mathematical Geosciences, 2009, 41 : 239 - 241
  • [9] Special Issue: Geostatistics Toronto 2021
    Sebastian Avalos
    Julian M. Ortiz
    R. Mohan Srivastava
    Mathematical Geosciences, 2023, 55 : 607 - 608
  • [10] Special Issue on Environmental Geostatistics PREFACE
    Gomez-Hernandez, J. Jaime
    Scheidt, Celine
    MATHEMATICAL GEOSCIENCES, 2013, 45 (05) : 507 - 509