Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites

被引:74
作者
Zeng, Zhihui [1 ]
Shahabadi, Seyed Ismail Seyed [1 ]
Che, Boyang [1 ]
Zhang, Youfang [1 ]
Zhao, Chenyang [1 ]
Lu, Xuehong [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
HUMAN-MOTION DETECTION; POLYMER NANOCOMPOSITES; ADJUSTABLE SENSITIVITY; CARBON NANOTUBES; FILMS; TRANSPARENT; FOAM; PRESSURE; CONDUCTIVITY; COMPOSITE;
D O I
10.1039/c7nr05106a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanocomposite strain sensors composed of compressed honeycomb-like reduced-graphene-oxide (RGO) foam embedded in polydimethylsiloxane are facilely fabricated via unidirectional freeze-drying and simple mechanical compression. The microstructural characteristics of the nanocomposites endow the sensors with excellent flexibility, high stretchability and sensing sensitivity, as well as anisotropic mechanical and sensing performance when stretched along directions vertical and parallel to the aligned RGO cell walls (defined as transverse and longitudinal directions, respectively). In particular, the compression of the aligned RGO foam into a thinner film results in more conductive pathways, greatly increasing the sensing sensitivity of the nanocomposite sensors. The sensors stretched along the transverse direction show an outstanding combination of high stretchability over 120%, wide linear sensing region of 0-110% and high strain sensing sensitivity with a gauge factor of around 7.2, while even higher strain sensitivity and lower sensing strain are exhibited along the longitudinal direction. Sensitive and reliable detection of human motions is also successfully demonstrated using these light-weight thin-film nanocomposite sensors.
引用
收藏
页码:17396 / 17404
页数:9
相关论文
共 48 条
  • [1] Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review
    Amjadi, Morteza
    Kyung, Ki-Uk
    Park, Inkyu
    Sitti, Metin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) : 1678 - 1698
  • [2] Graphene-based transparent strain sensor
    Bae, Sang-Hoon
    Lee, Youngbin
    Sharma, Bhupendra K.
    Lee, Hak-Joo
    Kim, Jae-Hyun
    Ahn, Jong-Hyun
    [J]. CARBON, 2013, 51 : 236 - 242
  • [3] Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites
    Boland, Conor S.
    Khan, Umar
    Ryan, Gavin
    Barwich, Sebastian
    Charifou, Romina
    Harvey, Andrew
    Backes, Claudia
    Li, Zheling
    Ferreira, Mauro S.
    Mobius, Matthias E.
    Young, Robert J.
    Coleman, Jonathan N.
    [J]. SCIENCE, 2016, 354 (6317) : 1257 - 1260
  • [4] Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites
    Boland, Conor S.
    Khan, Umar
    Backes, Claudia
    O'Neill, Arlene
    McCauley, Joe
    Duane, Shane
    Shanker, Ravi
    Liu, Yang
    Jurewicz, Izabela
    Dalton, Alan B.
    Coleman, Jonathan N.
    [J]. ACS NANO, 2014, 8 (09) : 8819 - 8830
  • [5] Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Single-Walled Carbon Nanotube Architecture
    Cai, Le
    Li, Jinzhu
    Luan, Pingshan
    Dong, Haibo
    Zhao, Duan
    Zhang, Qiang
    Zhang, Xiao
    Tu, Min
    Zeng, Qingsheng
    Zhou, Weiya
    Xie, Sishen
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (24) : 5238 - 5244
  • [6] Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays
    Chen, Zhuo
    Ming, Tian
    Goulamaly, Mahomed Mehdi
    Yao, Heming
    Nezich, Daniel
    Hempel, Marek
    Hofmann, Mario
    Kong, Jing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (28) : 5061 - 5067
  • [7] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
  • [8] A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion
    Cheng, Yin
    Wang, Ranran
    Sun, Jing
    Gao, Lian
    [J]. ADVANCED MATERIALS, 2015, 27 (45) : 7365 - +
  • [9] Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes
    Dai, HJ
    Wong, EW
    Lieber, CM
    [J]. SCIENCE, 1996, 272 (5261) : 523 - 526
  • [10] Strain dependent resistance in chemical vapor deposition grown graphene
    Fu, Xue-Wen
    Liao, Zhi-Min
    Zhou, Jian-Xin
    Zhou, Yang-Bo
    Wu, Han-Chun
    Zhang, Rui
    Jing, Guangyin
    Xu, Jun
    Wu, Xiaosong
    Guo, Wanlin
    Yu, Dapeng
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (21)