The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

被引:4
作者
Henry, Romain [1 ,2 ]
Bruneau, Emmanuelle [1 ,2 ]
Gardan, Rozenn [3 ]
Bertin, Stephane [1 ,2 ]
Fleuchot, Betty [3 ]
Decaris, Bernard [1 ,2 ]
Leblond-Bourget, Nathalie [1 ,2 ]
机构
[1] INRA, Genet & Microbiol UMR1128, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lorraine, Genet & Microbiol UMR1128, F-54506 Vandoeuvre Les Nancy, France
[3] INRA, MICALIS UMR1319, Equipe Peptides & Commun Bacterienne, F-78352 Jouy En Josas, France
关键词
SHOCK PROTEINS; COLD SHOCK; RGG; EXPRESSION; STRESS; GROWTH; HEAT; IDENTIFICATION; GLUCOSYLTRANSFERASE; METABOLISM;
D O I
10.1186/1471-2180-11-223
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results: In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg(0182) gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg(0182) is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Delta rgg(0182) mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions: These data showed the importance of the Rgg(0182) transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.
引用
收藏
页数:13
相关论文
共 41 条
[1]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[2]   Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus [J].
Bolotin, A ;
Quinquis, B ;
Renault, P ;
Sorokin, A ;
Ehrlich, SD ;
Kulakauskas, S ;
Lapidus, A ;
Goltsman, E ;
Mazur, M ;
Pusch, GD ;
Fonstein, M ;
Overbeek, R ;
Kyprides, N ;
Purnelle, B ;
Prozzi, D ;
Ngui, K ;
Masuy, D ;
Hancy, F ;
Burteau, S ;
Boutry, M ;
Delcour, J ;
Goffeau, A ;
Hols, P .
NATURE BIOTECHNOLOGY, 2004, 22 (12) :1554-1558
[3]   The pneumococcal response to oxidative stress includes a role for Rgg [J].
Bortoni, Magda E. ;
Terra, Vanessa S. ;
Hinds, Jason ;
Andrew, Peter W. ;
Yesilkaya, Hasan .
MICROBIOLOGY-SGM, 2009, 155 :4123-4134
[4]   Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival [J].
Chastanet, A ;
Prudhomme, M ;
Claverys, JP ;
Msadek, T .
JOURNAL OF BACTERIOLOGY, 2001, 183 (24) :7295-7307
[5]   Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes [J].
Chaussee, MA ;
Callegari, EA ;
Chaussee, MS .
JOURNAL OF BACTERIOLOGY, 2004, 186 (21) :7091-7099
[6]  
Chaussee MS, 1999, INFECT IMMUN, V67, P1715
[7]   Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes [J].
Chaussee, MS ;
Somerville, GA ;
Reitzer, L ;
Musser, JM .
JOURNAL OF BACTERIOLOGY, 2003, 185 (20) :6016-6024
[8]   Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes [J].
Chaussee, MS ;
Sylva, GL ;
Sturdevant, DE ;
Smoot, LM ;
Graham, MR ;
Watson, RO ;
Musser, JM .
INFECTION AND IMMUNITY, 2002, 70 (02) :762-770
[9]   Identification of rgg-regulated exoproteins of Streptococcus pyogenes [J].
Chaussee, MS ;
Watson, RO ;
Smoot, JC ;
Musser, JM .
INFECTION AND IMMUNITY, 2001, 69 (02) :822-831
[10]   CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria [J].
Derré, I ;
Rapoport, G ;
Msadek, T .
MOLECULAR MICROBIOLOGY, 1999, 31 (01) :117-131