DEEP NEURAL NETWORK FOR 3D PARTICLE DETECTION IN 3D FLUORESCENCE MICROSCOPY IMAGES VIA DENSITY MAP REGRESSION

被引:0
作者
Spilger, R. [1 ]
Chagin, V. O. [2 ,3 ]
Bold, C. S. [4 ]
Schermelleh, L. [5 ]
Muller, U. C. [4 ]
Cardoso, M. C. [2 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, IPMB, BioQuant, Heidelberg, Germany
[2] Tech Univ Darmstadt, Cell Biol & Epigenet, Dept Biol, Darmstadt, Germany
[3] Russian Acad Sci, Inst Cytol, St Petersburg, Russia
[4] Heidelberg Univ, IPMB, Funct Genom, Heidelberg, Germany
[5] Univ Oxford, Dept Biochem, Micron Adv Bioimaging Unit, Oxford, England
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Biomedical imaging; fluorescence microscopy; 3D image data; particle detection; deep learning; TRACKING;
D O I
10.1109/ISBI52829.2022.9761509
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic detection of particles in fluorescence microscopy images is crucial to analyze cellular processes. We introduce a novel deep learning method for 3D fluorescent particle detection. Instead of pixel-wise binary classification or direct coordinate regression, we perform image-to-image mapping based on regressing a density map. Detections close to particles are rewarded in the network training, and highly nonlinear direct prediction of point coordinates is avoided. To focus on particles in comparison to background image points, we suggest using the adaptive wing loss. We also employ a weighted loss map to cope with the very strong imbalance between particle and background image points for 3D images. We evaluated our approach using 3D images of the Particle Tracking Challenge and real 3D fluorescence microscopy images of chromatin structures and interneurons. It turned out that our approach generally outperforms previous methods.
引用
收藏
页数:4
相关论文
共 15 条
[11]   Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy [J].
Stepka, Karel ;
Matula, Pavel ;
Matula, Petr ;
Woerz, Stefan ;
Rohr, Karl ;
Kozubek, Michal .
CYTOMETRY PART A, 2015, 87A (08) :759-772
[12]   Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression [J].
Wang, Xinyao ;
Bo, Liefeng ;
Li Fuxin .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6970-6980
[13]  
Wollmann T, 2019, I S BIOMED IMAGING, P517, DOI [10.1109/isbi.2019.8759234, 10.1109/ISBI.2019.8759234]
[14]   Microscopy cell counting and detection with fully convolutional regression networks [J].
Xie, Weidi ;
Noble, J. Alison ;
Zisserman, Andrew .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) :283-292
[15]   Automated detection of the HER2 gene amplification status in Fluorescence in situ hybridization images for the diagnostics of cancer tissues [J].
Zakrzewski, Falk ;
de Back, Walter ;
Weigert, Martin ;
Wenke, Torsten ;
Zeugner, Silke ;
Mantey, Robert ;
Sperling, Christian ;
Friedrich, Katrin ;
Roeder, Ingo ;
Aust, Daniela ;
Baretton, Gustavo ;
Hoenscheid, Pia .
SCIENTIFIC REPORTS, 2019, 9 (1)