DEEP NEURAL NETWORK FOR 3D PARTICLE DETECTION IN 3D FLUORESCENCE MICROSCOPY IMAGES VIA DENSITY MAP REGRESSION

被引:0
作者
Spilger, R. [1 ]
Chagin, V. O. [2 ,3 ]
Bold, C. S. [4 ]
Schermelleh, L. [5 ]
Muller, U. C. [4 ]
Cardoso, M. C. [2 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, IPMB, BioQuant, Heidelberg, Germany
[2] Tech Univ Darmstadt, Cell Biol & Epigenet, Dept Biol, Darmstadt, Germany
[3] Russian Acad Sci, Inst Cytol, St Petersburg, Russia
[4] Heidelberg Univ, IPMB, Funct Genom, Heidelberg, Germany
[5] Univ Oxford, Dept Biochem, Micron Adv Bioimaging Unit, Oxford, England
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Biomedical imaging; fluorescence microscopy; 3D image data; particle detection; deep learning; TRACKING;
D O I
10.1109/ISBI52829.2022.9761509
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic detection of particles in fluorescence microscopy images is crucial to analyze cellular processes. We introduce a novel deep learning method for 3D fluorescent particle detection. Instead of pixel-wise binary classification or direct coordinate regression, we perform image-to-image mapping based on regressing a density map. Detections close to particles are rewarded in the network training, and highly nonlinear direct prediction of point coordinates is avoided. To focus on particles in comparison to background image points, we suggest using the adaptive wing loss. We also employ a weighted loss map to cope with the very strong imbalance between particle and background image points for 3D images. We evaluated our approach using 3D images of the Particle Tracking Challenge and real 3D fluorescence microscopy images of chromatin structures and interneurons. It turned out that our approach generally outperforms previous methods.
引用
收藏
页数:4
相关论文
共 15 条
  • [1] Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images
    Basset, Antoine
    Boulanger, Jerome
    Salamero, Jean
    Bouthemy, Patrick
    Kervrann, Charles
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 4512 - 4527
  • [2] 4D Visualization of replication foci in mammalian cells corresponding to individual replicons
    Chagin, V. O.
    Casas-Delucchi, C. S.
    Reinhart, M.
    Schermelleh, L.
    Markaki, Y.
    Maiser, A.
    Bolius, J. J.
    Bensimon, A.
    Fillies, M.
    Domaing, P.
    Rozanov, Y. M.
    Leonhardt, H.
    Cardoso, M. C.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [3] Objective comparison of particle tracking methods
    Chenouard, Nicolas
    Smal, Ihor
    de Chaumont, Fabrice
    Maska, Martin
    Sbalzarini, Ivo F.
    Gong, Yuanhao
    Cardinale, Janick
    Carthel, Craig
    Coraluppi, Stefano
    Winter, Mark
    Cohen, Andrew R.
    Godinez, William J.
    Rohr, Karl
    Kalaidzidis, Yannis
    Liang, Liang
    Duncan, James
    Shen, Hongying
    Xu, Yingke
    Magnusson, Klas E. G.
    Jalden, Joakim
    Blau, Helen M.
    Paul-Gilloteaux, Perrine
    Roudot, Philippe
    Kervrann, Charles
    Waharte, Francois
    Tinevez, Jean-Yves
    Shorte, Spencer L.
    Willemse, Joost
    Celler, Katherine
    van Wezel, Gilles P.
    Dan, Han-Wei
    Tsai, Yuh-Show
    Ortiz de Solorzano, Carlos
    Olivo-Marin, Jean-Christophe
    Meijering, Erik
    [J]. NATURE METHODS, 2014, 11 (03) : 281 - U247
  • [4] SpotLearn: Convolutional Neural Network for Detection of Fluorescence In Situ Hybridization ( FISH) Signals in High-Throughput Imaging Approaches
    Gudla, Prabhakar R.
    Nakayama, Koh
    Pegoraro, Gianluca
    Misteli, Tom
    [J]. CHROMOSOME SEGREGATION AND STRUCTURE, VOL 82, 2017, 2017, 82 : 57 - 70
  • [5] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [6] Luo Z., 2021, P IEEE CVF C COMP VI, P13264
  • [7] Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D
    Newby, Jay M.
    Schaefer, Alison M.
    Lee, Phoebe T.
    Forest, M. Gregory
    Lai, Samuel K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) : 9026 - 9031
  • [8] Extraction of spots in biological images using multiscale products
    Olivo-Marin, JC
    [J]. PATTERN RECOGNITION, 2002, 35 (09) : 1989 - 1996
  • [9] Automatic tracking of individual fluorescence particles: Application to the study of chromosome dynamics
    Sage, D
    Neumann, FR
    Hediger, F
    Gasser, SM
    Unser, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (09) : 1372 - 1383
  • [10] A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering
    Smal, Ihor
    Niessen, Wiro
    Meijering, Erik
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 264 - 267