A note on Sen's theory in the imperfect residue field case

被引:4
作者
Ohkubo, Shun [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
p-Adic representations; Sen's theory; Galois cohomology; ADIC GALOIS REPRESENTATIONS;
D O I
10.1007/s00209-010-0726-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Sen's theory in the imperfect residue field case, Brinon defined a functor from the category of C(p)-representations to the category of linear representations of a certain Lie algebra. We give a comparison theorem between the continuous Galois cohomology of C(p)-representations and the Lie algebra cohomology of the associated representations. The key ingredients of the proof are Hyodo's calculation of Galois cohomology and the effaceability of Lie algebra cohomology for solvable Lie algebras.
引用
收藏
页码:261 / 280
页数:20
相关论文
共 11 条
  • [1] Brinon O, 2003, MATH ANN, V327, P793, DOI 10.1007/s00208-003-0472-3
  • [2] ELIMINATING WILD RAMIFICATION
    EPP, HP
    [J]. INVENTIONES MATHEMATICAE, 1973, 19 (03) : 235 - 249
  • [3] Fontaine JM, 2004, ASTERISQUE, P1
  • [4] Hochschild G., 1954, AM J MATH, V76, P763
  • [5] HYODO O, 1986, J REINE ANGEW MATH, V365, P97
  • [6] SCHOLL AJ, 1998, INTRO KATOS EULER SY, P379
  • [7] CONTINUOUS CO-HOMOLOGY AND P-ADIC GALOIS REPRESENTATIONS
    SEN, S
    [J]. INVENTIONES MATHEMATICAE, 1980, 62 (01) : 89 - 116
  • [8] Serre J.-P., 1967, P C LOC FIELDS DRIEB, P118
  • [9] Tate J. T., 1967, P C LOCAL FIELDS NUF, V54, P158
  • [10] WEIBEL C, 1995, CAMBRIDGE STUDIES AD, V38