A generalized Kerker condition for highly directive nanoantennas

被引:216
作者
Alaee, R. [1 ]
Filter, R. [2 ]
Lehr, D. [3 ]
Lederer, F. [2 ]
Rockstuhl, C. [1 ,4 ]
机构
[1] Karlsruhe Inst Technol, Inst Theoret Solid State Phys, D-76128 Karlsruhe, Germany
[2] Univ Jena, Abbe Ctr Photon, Inst Condensed Matter Theory & Solid State Opt, D-07743 Jena, Germany
[3] Univ Jena, Abbe Ctr Photon, Inst Appl Phys, D-07743 Jena, Germany
[4] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
SCATTERING; EMISSION; DIPOLAR; RESONANCES; ANTENNAS; RING;
D O I
10.1364/OL.40.002645
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A nanoantenna with balanced electric and magnetic dipole moments, known as the first Kerker condition, exhibits a directive radiation pattern with zero backscattering. In principle, a nanoantenna can provide even better directionality if higher order moments are properly balanced. Here, we study a generalized Kerker condition in the example of a nanoring nanoantenna supporting electric dipole and electric quadrupole moments. Nanoring antennas are well suited since both multipole moments can be almost independently tuned to meet the generalized Kerker condition. (C) 2015 Optical Society of America
引用
收藏
页码:2645 / 2648
页数:4
相关论文
共 43 条
[1]   Optical properties of gold nanorings -: art. no. 057401 [J].
Aizpurua, J ;
Hanarp, P ;
Sutherland, DS ;
Käll, M ;
Bryant, GW ;
de Abajo, FJG .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[2]   Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications [J].
Alaee, R. ;
Albooyeh, M. ;
Yazdi, M. ;
Komjani, N. ;
Simovski, C. ;
Lederer, F. ;
Rockstuhl, C. .
PHYSICAL REVIEW B, 2015, 91 (11)
[3]   Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling [J].
Alaee, Rasoul ;
Menzel, Christoph ;
Huebner, Uwe ;
Pshenay-Severin, Ekaterina ;
Bin Hasan, Shakeeb ;
Pertsch, Thomas ;
Rockstuhl, Carsten ;
Lederer, Falk .
NANO LETTERS, 2013, 13 (08) :3482-3486
[4]   Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas [J].
Alonso-Gonzalez, P. ;
Albella, P. ;
Neubrech, F. ;
Huck, C. ;
Chen, J. ;
Golmar, F. ;
Casanova, F. ;
Hueso, L. E. ;
Pucci, A. ;
Aizpurua, J. ;
Hillenbrand, R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (20)
[5]   Multifrequency optical invisibility cloak with layered plasmonic shells [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[6]  
[Anonymous], 1998, Classical Electrodynamics
[7]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[8]   Optical cloaking with metamaterials [J].
Cai, Wenshan ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NATURE PHOTONICS, 2007, 1 (04) :224-227
[9]   Directional emission from a single plasmonic scatterer [J].
Coenen, Toon ;
Arango, Felipe Bernal ;
Koenderink, A. Femius ;
Polman, Albert .
NATURE COMMUNICATIONS, 2014, 5
[10]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933