Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate

被引:11
作者
Francini, E. [1 ]
Lin, C. -L. [2 ]
Vessella, S. [1 ]
Wang, J. -N. [3 ]
机构
[1] Univ Florence, I-50121 Florence, Italy
[2] Natl Cheng Kung Univ, Tainan 701, Taiwan
[3] Natl Taiwan Univ, Taipei, Taiwan
关键词
Carleman estimate; Three-region inequalities; Discontinuous coefficients; Size estimate; INVERSE CONDUCTIVITY PROBLEM; CARLEMAN ESTIMATE; JUMPS; INCLUSION; OPERATORS; BODY;
D O I
10.1016/j.jde.2016.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we would like to derive a quantitative uniqueness estimate, the three-region inequality, for the second order elliptic equation with jump discontinuous coefficients. The derivation of the inequality relies on the Carleman estimate proved in our previous work [5]. We then apply the three-region inequality to study the size estimate problem with one boundary measurement. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:5306 / 5323
页数:18
相关论文
共 18 条
[1]   Detecting an inclusion in an elastic body boundary measurements [J].
Alessandrini, G ;
Morassi, A ;
Rosset, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1247-1268
[2]   Optimal size estimates for the inverse conductivity problem with one measurement [J].
Alessandrini, G ;
Rosset, E ;
Seo, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :53-64
[3]   The inverse conductivity problem with one measurement: Bounds on the size of the unknown object [J].
Alessandrini, G ;
Rosset, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1060-1071
[4]   The linear constraints in Poincare and Korn type inequalities [J].
Alessandrini, Giovanni ;
Morassi, Antonino ;
Rosset, Edi .
FORUM MATHEMATICUM, 2008, 20 (03) :557-569
[5]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[6]   Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface [J].
Di Cristo, M. ;
Francini, E. ;
Lin, C. -L. ;
Vessella, S. ;
Wang, J. -N. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (02) :163-206
[7]   SIZE ESTIMATES OF THE INVERSE INCLUSION PROBLEM FOR THE SHALLOW SHELL EQUATION [J].
Di Cristo, M. ;
Lin, C. -L. ;
Vessella, S. ;
Wang, J. -N. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) :88-100
[8]  
Di Cristo M, 2013, ANN SCUOLA NORM-SCI, V12, P43
[9]   MONOTONICITY PROPERTIES OF VARIATIONAL INTEGRALS, AP WEIGHTS AND UNIQUE CONTINUATION [J].
GAROFALO, N ;
LIN, FH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (02) :245-268
[10]   The inverse conductivity problem with one measurement: Stability and estimation of size [J].
Kang, HB ;
Seo, JK ;
Sheen, DW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) :1389-1405