CHAOTIC DYNAMICS OF A SIMPLE PARAMETRICALLY DRIVEN DISSIPATIVE CIRCUIT

被引:10
作者
Philominathan, P. [1 ]
Santhiah, M. [1 ]
Mohamed, I. Raja [2 ]
Murali, K. [3 ]
Rajasekar, S. [4 ]
机构
[1] AVVM Sri Pushpam Coll, PG & Res Dept Phys, Poondi 613503, Thanjavur, India
[2] BS Abdur Rahman Univ, Dept Phys, Madras 600048, Tamil Nadu, India
[3] Anna Univ, Dept Phys, Madras 600025, Tamil Nadu, India
[4] Bharathidasan Univ, Sch Phys, Tiruchirappalli 620024, India
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 07期
关键词
Bifurcations; chaos; nonlinear electronic circuits; CHUAS CIRCUIT; SYNCHRONIZATION; SUPPRESSION; SIGNAL;
D O I
10.1142/S0218127411029537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a simple parametrically driven dissipative second-order chaotic circuit. In this circuit, one of the circuit parameters is varied by an external periodic control signal. Thus by tuning the parameter values of this circuit, classic period-doubling bifurcation route to chaos is found to occur. The experimentally observed phenomena is further validated through corresponding numerical simulation of the circuit equations. The periodic and chaotic dynamics of this model is further characterized by computing Lyapunov exponents.
引用
收藏
页码:1927 / 1933
页数:7
相关论文
共 21 条
[1]   ROUTES TO SUPPRESSING CHAOS BY WEAK PERIODIC PERTURBATIONS [J].
CHACON, R ;
BEJARANO, JD .
PHYSICAL REVIEW LETTERS, 1993, 71 (19) :3103-3106
[2]  
Chua LO., 1987, Linear and nonlinear circuits
[3]   Impulsive synchronization between two mixed-mode chaotic circuits [J].
Kiliç, R .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2005, 14 (02) :333-346
[4]   Improved realization of mixed-mode chaotic circuit [J].
Kiliç, R ;
Alçi, M ;
Çam, U ;
Kuntman, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06) :1429-1435
[5]   SUPPRESSION OF CHAOS BY NONRESONANT PARAMETRIC PERTURBATIONS [J].
KIVSHAR, YS ;
RODELSPERGER, F ;
BENNER, H .
PHYSICAL REVIEW E, 1994, 49 (01) :319-324
[6]  
Lakshmanan M., 1996, Chaos in nonlinear oscillators:controlling and synchronization
[7]  
LAKSHMANAN M, 2003, NONLINEAR DYNAMCIS I
[8]   Transients in a time-dependent logistic map [J].
Leonel, ED ;
da Silva, JKL ;
Kamphorst, SO .
PHYSICA A, 2001, 295 (1-2) :280-284
[9]   Control of dynamical systems behavior by parametric perturbations: An analytic approach [J].
Loskutov, Alexander Yu ;
Shishmarev, Andrew I. .
CHAOS, 1994, 4 (02) :391-395
[10]   Suppression of chaos by cyclic parametric excitation in two-dimensional maps [J].
Loskutov, AY ;
Rybalko, SD ;
Feudel, U ;
Kurths, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18) :5759-5771