A Simulation Study on the Pacing and Driving of the Biological Pacemaker

被引:1
|
作者
Zhang, Yue [1 ,2 ]
Zhang, Lei [3 ]
Wang, Yong [1 ]
Wang, Kuanquan [4 ]
机构
[1] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Univ New South Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia
[3] Univ Maryland, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CARDIAC-PACEMAKERS; CARDIOMYOCYTES; DYSFUNCTION; GENERATION; MECHANISM; THERAPY; DEVICES;
D O I
10.1155/2020/4803172
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The research on the biological pacemaker has been very active in recent years. And turning nonautomatic ventricular cells into pacemaking cells is believed to hold the key to making a biological pacemaker. In the study, the inward-rectifier K+ current (IK1) is depressed to induce the automaticity of the ventricular myocyte, and then, the effects of the other membrane ion currents on the automaticity are analyzed. It is discovered that the L-type calcium current (ICaL) plays a major part in the rapid depolarization of the action potential (AP). A small enough ICaL would lead to the failure of the automaticity of the ventricular myocyte. Meanwhile, the background sodium current (IbNa), the background calcium current (IbCa), and the Na+/Ca2+ exchanger current (INaCa) contribute significantly to the slow depolarization, indicating that these currents are the main supplementary power of the pacing induced by depressing IK1, while in the 2D simulation, we find that the weak electrical coupling plays a more important role in the driving of a biological pacemaker.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Biological pacemaker: from biological experiments to computational simulation
    Li, Yacong
    Wang, Kuanquan
    Li, Qince
    Zhang, Henggui
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2020, 21 (07): : 524 - 536
  • [2] Effect of Electrical Coupling at The Border on The 1D Biological Pacemaker - A Simulation Study
    Zhang Yue
    Liu Shu-Yong
    Li Jie
    Wang Kuan-Quan
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2020, 47 (05) : 448 - 456
  • [3] Pacing the Heart with Genes: Recent Progress in Biological Pacing
    Cho, Hee Cheol
    CURRENT CARDIOLOGY REPORTS, 2015, 17 (08)
  • [4] Improving cardiac rhythm with a biological pacemaker
    Munshi, Nikhil V.
    Olson, Eric N.
    SCIENCE, 2014, 345 (6194) : 268 - 269
  • [5] Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study
    Ritter, Philippe
    Duray, Gabor Z.
    Steinwender, Clemens
    Soejima, Kyoko
    Omar, Razali
    Mont, Lluis
    Boersma, Lucas V. A.
    Knops, Reinoud E.
    Chinitz, Larry
    Zhang, Shu
    Narasimhan, Calambur
    Hummel, John
    Lloyd, Michael
    Simmers, Timothy Alexander
    Voigt, Andrew
    Laager, Verla
    Stromberg, Kurt
    Bonner, Matthew D.
    Sheldon, Todd J.
    Reynolds, Dwight
    Kypta, Alexander
    Vamos, Mate
    Bordachar, Pierre
    El Chami, Mikhael
    Hussin, Azlan
    Mont Girbau, Josep Lluis
    Roberts, Paul
    De Groot, Joris R.
    Tjong, Fleur V. Y.
    Sato, Toshiaki
    Bongiorni, Maria Grazia
    Soldati, Ezio
    Hummel, John
    Love, Charles
    Neuzil, Petr
    Reddy, Vivek
    Bracke, Frank A. L. E.
    Sagi, Venkata
    Lee, Scott
    Gornick, Charles
    Remole, Stephen
    Sra, Jasbir
    Nangia, Vikram
    Shehata, Michael
    Swerdlow, Charles
    Schoenhard, John
    Milstein, Simon
    Saba, Samir
    Bernabei, Matthew
    Bansal, Sandeep
    EUROPEAN HEART JOURNAL, 2015, 36 (37) : 2510 - 2519
  • [6] Is conduction system pacing a panacea for pacemaker therapy?
    Kamalathasan, Stephe
    Paton, Maria
    Gierula, John
    Straw, Sam
    Witte, Klaus K.
    EXPERT REVIEW OF MEDICAL DEVICES, 2024, 21 (07) : 613 - 623
  • [7] The road to biological pacing
    Rosen, Michael R.
    Robinson, Richard B.
    Brink, Peter R.
    Cohen, Ira S.
    NATURE REVIEWS CARDIOLOGY, 2011, 8 (11) : 656 - 666
  • [8] SHOX2 Overexpression Favors Differentiation of Embryonic Stem Cells into Cardiac Pacemaker Cells, Improving Biological Pacing Ability
    Ionta, Vittoria
    Liang, Wenbin
    Kim, Elizabeth H.
    Rafie, Reza
    Giacomello, Alessandro
    Marban, Eduardo
    Cho, Hee Cheol
    STEM CELL REPORTS, 2015, 4 (01): : 129 - 142
  • [9] Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model
    Sleiman, Yvonne
    Reisqs, Jean-Baptiste
    Boutjdir, Mohamed
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [10] Compatibility of temporary pacemaker myocardial pacing leads with magnetic resonance imaging: an ex vivo tissue study
    Pfeil, Alexander
    Drobnik, Stefanie
    Rzanny, Reinhard
    Aboud, Anas
    Boettcher, Joachim
    Schmidt, Peter
    Ortmann, Christian
    Mall, Gita
    Hekmat, Khosro
    Brehm, Bernhard
    Reichenbach, Juergen
    Mayer, Thomas E.
    Wolf, Gunter
    Hansch, Andreas
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2012, 28 (02): : 317 - 326