TurboPutative: A web server for data handling and metabolite classification in untargeted metabolomics

被引:6
作者
Barrero-Rodriguez, Rafael [1 ]
Manuel Rodriguez, Jose [1 ]
Tarifa, Rocio [1 ]
Vazquez, Jesus [1 ]
Mastrangelo, Annalaura [2 ]
Ferrarini, Alessia [1 ]
机构
[1] Ctr Nacl Invest Cardiovasc CNIC, Cardiovasc Prote Lab, Madrid, Spain
[2] Ctr Nacl Invest Cardiovasc CNIC, Immunobiol Lab, Madrid, Spain
基金
欧洲研究理事会;
关键词
putative annotations; LC-MS; simplification; lipids; metabolite ID prioritize; SPECTROMETRY DATA; ATHEROSCLEROSIS; METABONOMICS; ANNOTATION; SPECTRA; SYSTEMS; XCMS;
D O I
10.3389/fmolb.2022.952149
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Untargeted metabolomics aims at measuring the entire set of metabolites in a wide range of biological samples. However, due to the high chemical diversity of metabolites that range from small to large and more complex molecules (i.e., amino acids/carbohydrates vs. phospholipids/gangliosides), the identification and characterization of the metabolome remain a major bottleneck. The first step of this process consists of searching the experimental monoisotopic mass against databases, thus resulting in a highly redundant/complex list of candidates. Despite the progress in this area, researchers are still forced to manually explore the resulting table in order to prioritize the most likely identifications for further biological interpretation or confirmation with standards. Here, we present TurboPutative (https:// proteomics.cnic.es/TurboPutative/), a flexible and user-friendly web-based platform composed of four modules (Tagger, REname, RowMerger, and TPMetrics) that streamlines data handling, classification, and interpretability of untargeted LC-MS-based metabolomics data. Tagger classifies the different compounds and provides preliminary insights into the biological system studied. REname improves putative annotation handling and visualization, allowing the recognition of isomers and equivalent compounds and redundant data removal. RowMerger reduces the dataset size, facilitating the manual comparison among annotations. Finally, TPMetrics combines different datasets with feature intensity and relevant information for the researcher and calculates a score based on adduct probability and feature correlations, facilitating further identification, assessment, and interpretation of the results. The Turbo Putative web application allows researchers in the metabolomics field that are dealing with massive datasets containing multiple putative annotations to reduce the number of these entries by 80%-90%, thus facilitating the extrapolation of biological knowledge and improving metabolite prioritization for subsequent pathway analysis. TurboPutative comprises a rapid, automated, and customizable workflow that can also be included in programmed bioinformatics pipelines through its RESTful API services. Users can explore the performance of each module through demo datasets supplied on the website. The platform will help the metabolomics community to speed up the arduous task of manual data curation that is required in the first steps of metabolite identification, improving the generation of biological knowledge.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices [J].
Alseekh, Saleh ;
Aharoni, Asaph ;
Brotman, Yariv ;
Contrepois, Kevin ;
D'Auria, John ;
Ewald, Jan ;
Ewald, Jennifer C. ;
Fraser, Paul D. ;
Giavalisco, Patrick ;
Hall, Robert D. ;
Heinemann, Matthias ;
Link, Hannes ;
Luo, Jie ;
Neumann, Steffen ;
Nielsen, Jens ;
de Souza, Leonardo Perez ;
Saito, Kazuki ;
Sauer, Uwe ;
Schroeder, Frank C. ;
Schuster, Stefan ;
Siuzdak, Gary ;
Skirycz, Aleksandra ;
Sumner, Lloyd W. ;
Snyder, Michael P. ;
Tang, Huiru ;
Tohge, Takayuki ;
Wang, Yulan ;
Wen, Weiwei ;
Wu, Si ;
Xu, Guowang ;
Zamboni, Nicola ;
Fernie, Alisdair R. .
NATURE METHODS, 2021, 18 (07) :747-756
[2]   Metabolomics: from small molecules to big ideas [J].
Baker, Monya .
NATURE METHODS, 2011, 8 (02) :117-121
[3]   Dealing with the Unknown: Metabolomics and Metabolite Atlases [J].
Bowen, Benjamin P. ;
Northen, Trent R. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (09) :1471-1476
[4]   Large-scale lipid analysis with C=C location and sn-position isomer resolving power [J].
Cao, Wenbo ;
Cheng, Simin ;
Yang, Jing ;
Feng, Jiaxin ;
Zhang, Wenpeng ;
Li, Zishuai ;
Chen, Qinhua ;
Xia, Yu ;
Ouyang, Zheng ;
Ma, Xiaoxiao .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Metabolite identification: are you sure? And how do your peers gauge your confidence? [J].
Creek, Darren J. ;
Dunn, Warwick B. ;
Fiehn, Oliver ;
Griffin, Julian L. ;
Hall, Robert D. ;
Lei, Zhentian ;
Mistrik, Robert ;
Neumann, Steffen ;
Schymanski, Emma L. ;
Sumner, Lloyd W. ;
Trengove, Robert ;
Wolfender, Jean-Luc .
METABOLOMICS, 2014, 10 (03) :350-353
[6]   Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks [J].
Fiehn, O .
COMPARATIVE AND FUNCTIONAL GENOMICS, 2001, 2 (03) :155-168
[7]   Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online [J].
Forsberg, Erica M. ;
Huan, Tao ;
Rinehart, Duane ;
Benton, H. Paul ;
Warth, Benedikt ;
Hilmers, Brian ;
Siuzdak, Gary .
NATURE PROTOCOLS, 2018, 13 (04) :633-651
[8]   CEU Mass Mediator 3.0: A Metabolite Annotation Tool [J].
Gil-de-la-Fuente, Alberto ;
Godzien, Joanna ;
Saugar, Sergio ;
Garcia-Carmona, Rodrigo ;
Badran, Hasan ;
Wishart, David S. ;
Barbas, Coral ;
Otero, Abraham .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) :797-802
[9]   HERMES: a molecular-formula-oriented method to target the metabolome [J].
Gine, Roger ;
CapeHades, Jordi ;
Badia, Josep M. ;
Vughs, Dennis ;
Schwaiger-Haber, Michaela ;
Alexandrov, Theodore ;
Vinaixa, Maria ;
Brunner, Andrea M. ;
Patti, Gary J. ;
Yanes, Oscar .
NATURE METHODS, 2021, 18 (11) :1370-+
[10]   High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids [J].
Groessl, M. ;
Graf, S. ;
Knochenmuss, R. .
ANALYST, 2015, 14 (20) :6904-6911