Multisoliton pulse breakup in WKB approximation

被引:4
作者
Korneev, N. [1 ]
Catana Castellanos, J. A. [1 ]
Vysloukh, V. A. [2 ]
机构
[1] INAOE, Luis Enrique Erro 1, Puebla 72840, Mexico
[2] Univ Americas Puebla, Catarina Martir S-N, Cholula 72810, Mexico
来源
OPTIK | 2020年 / 207卷
关键词
Zakharov-Shabat; WKB; Multisoliton; Pulse breakup; SEMICLASSICAL SOLITON ENSEMBLE;
D O I
10.1016/j.ijleo.2020.164359
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The application of the Wentzel-Kramers-Brillouin (WKB) method for Zakharov-Shabat scattering problem with high-amplitude smooth pulses is discussed. For pulses with limited phase variation, the eigenvalue spectrum for high pulse amplitude A lies on a curve in the complex plane to the order of A(-1). The eigenvalues here can be accurately estimated using integrals on a real interval, similar to quantum mechanics. For pulses with big phase variation, such features as symmetry breaking can be studied with more involved complex WKB approach. Comparison with numerical and analytical results is reported.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
Ablowitz M.J., 1981, SOLITONS INVERSE SCA
[2]   Stimulated decay of N-soliton pulses and optimal separation of one-soliton components [J].
Aleshkevich, VA ;
Vysloukh, VA ;
Zhukarev, AS ;
Kartashev, YV ;
Sinilo, PV .
QUANTUM ELECTRONICS, 2003, 33 (05) :460-464
[3]   SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS [J].
BERRY, MV ;
MOUNT, KE .
REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) :315-+
[4]   Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation [J].
Bronski, JC ;
Kutz, JN .
PHYSICS LETTERS A, 1999, 254 (06) :325-336
[5]   TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE [J].
FLECK, JA ;
MORRIS, JR ;
FEIT, MD .
APPLIED PHYSICS, 1976, 10 (02) :129-160
[6]  
Kamvissis S, 2003, ANN MATH STUD, P1
[7]   Purely imaginary eigenvalues of Zakharov-Shabat systems [J].
Klaus, M ;
Shaw, JK .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036607
[8]   Coupling constant behavior of eigenvalues of Zakharov-Shabat systems [J].
Klaus, Martin ;
Mityagin, Boris .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
[9]   Multisoliton spectrum breaking due to small harmonic perturbations [J].
Korneev, N. ;
Catana Castellanos, J. A. ;
Vysloukh, V. A. .
OPTIK, 2019, 179 :560-565
[10]   A second look at the Gaussian semiclassical soliton ensemble for the focusing nonlinear Schrodinger equation [J].
Lee, Long ;
Lyng, Gregory D. .
PHYSICS LETTERS A, 2013, 377 (16-17) :1179-1188