Transcriptional Characterization of Wnt and Notch Signaling Pathways in Neuronal Differentiation of Human Adipose Tissue-Derived Stem Cells

被引:24
作者
Johana Cardozo, Alejandra [1 ]
Eduardo Gomez, Daniel [2 ]
Francisco Argibay, Pablo [1 ]
机构
[1] Hosp Italiano Buenos Aires, Inst Ciencias Basicas & Med Expt, Buenos Aires, DF, Argentina
[2] Univ Nacl Quilmes, Lab Oncol Mol, Buenos Aires, DF, Argentina
关键词
Adipose stem cells; Neuronal differentiation; Wnt and Notch signaling; STROMAL CELLS; BETA-CATENIN; NEURAL DIFFERENTIATION; IN-VITRO; SELF-RENEWAL; EXPRESSION; PROTEIN; GROWTH; GENES; TRANSPLANTATION;
D O I
10.1007/s12031-011-9503-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.
引用
收藏
页码:186 / 194
页数:9
相关论文
共 81 条
[1]   FGF-dependent Notch signaling maintains the spinal cord stem zone [J].
Akai, J ;
Halley, PA ;
Storey, KG .
GENES & DEVELOPMENT, 2005, 19 (23) :2877-2887
[2]   Notch signaling is required to maintain all neural stem cell populations - Irrespective of spatial or temporal niche [J].
Alexson, TO ;
Hitoshi, S ;
Coles, BL ;
Bernstein, A ;
van der Kooy, D .
DEVELOPMENTAL NEUROSCIENCE, 2006, 28 (1-2) :34-48
[3]  
Androutsellis-Theotokis A, 2006, NATURE, V442, P823, DOI 10.1038/nature04940
[4]   Neuronal Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells [J].
Anghileri, Elena ;
Marconi, Silvia ;
Pignatelli, Angela ;
Cifelli, Pierangelo ;
Galie, Mirco ;
Sbarbati, Andrea ;
Krampera, Mauro ;
Belluzzi, Ottorino ;
Bonetti, Bruno .
STEM CELLS AND DEVELOPMENT, 2008, 17 (05) :909-916
[5]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[6]   In vitro differentiation of human processed lipoaspirate cells into early neural progenitors [J].
Ashjian, PH ;
Elbarbary, AS ;
Edmonds, B ;
DeUgarte, D ;
Zhu, M ;
Zuk, PA ;
Lorenz, HP ;
Benhaim, P ;
Hedrick, MH .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2003, 111 (06) :1922-1931
[7]   Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway [J].
Baek, SH ;
Kioussi, C ;
Briata, P ;
Wang, DG ;
Nguyen, HD ;
Ohgi, KA ;
Glass, CK ;
Wynshaw-Boris, A ;
Rose, DW ;
Rosenfeld, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3245-3250
[8]   EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO [J].
BAIN, G ;
KITCHENS, D ;
YAO, M ;
HUETTNER, JE ;
GOTTLIEB, DI .
DEVELOPMENTAL BIOLOGY, 1995, 168 (02) :342-357
[9]   Wnt signaling in Xenopus embryos inhibits Bmp4 expression and activates neural development [J].
Baker, JC ;
Beddington, RSP ;
Harland, RM .
GENES & DEVELOPMENT, 1999, 13 (23) :3149-3159
[10]   Regulation of Wnt signaling during adipogenesis [J].
Bennett, CN ;
Ross, SE ;
Longo, KA ;
Bajnok, L ;
Hemati, N ;
Johnson, KW ;
Harrison, SD ;
MacDougald, OA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (34) :30998-31004