Target-Cognisant Siamese Network for Robust Visual Object Tracking *

被引:3
|
作者
Jiang, Yingjie [1 ]
Song, Xiaoning [1 ]
Xu, Tianyang [1 ]
Feng, Zhenhua [2 ,3 ]
Wu, Xiaojun [1 ]
Kittler, Josef [3 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[2] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, England
[3] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Visual object tracking; Siamese network; Anchor -free regression; PEDESTRIAN TRACKING;
D O I
10.1016/j.patrec.2022.09.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese trackers have become the mainstream framework for visual object tracking in recent years. However, the extraction of the template and search space features is disjoint for a Siamese tracker, resulting in a limited interaction between its classification and regression branches. This degrades the model capacity accurately to estimate the target, especially when it exhibits severe appearance variations. To address this problem, this paper presents a target-cognisant Siamese network for robust visual tracking. First, we introduce a new target-cognisant attention block that computes spatial cross-attention between the template and search branches to convey the relevant appearance information before correlation. Second, we advocate two mechanisms to promote the precision of obtained bounding boxes under complex tracking scenarios. Last, we propose a max filtering module to utilise the guidance of the regression branch to filter out potential interfering predictions in the classification map. The experimental results obtained on challenging benchmarks demonstrate the competitive performance of the proposed method.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] Robust Template Adjustment Siamese Network for Object Visual Tracking
    Tang, Chuanming
    Qin, Peng
    Zhang, Jianlin
    SENSORS, 2021, 21 (04) : 1 - 17
  • [2] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    SENSORS, 2019, 19 (08)
  • [3] Learning Motion-Perceive Siamese network for robust visual object tracking
    Kang, Ze
    Xu, Tianyang
    Zhu, Xue-Feng
    Wu, Xiao-Jun
    PATTERN RECOGNITION LETTERS, 2023, 173 : 23 - 29
  • [4] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [5] SiamMN: Siamese modulation network for visual object tracking
    Li-hua Fu
    Yu Ding
    Yu-bin Du
    Bo Zhang
    Lu-yuan Wang
    Dan Wang
    Multimedia Tools and Applications, 2020, 79 : 32623 - 32641
  • [6] Siamese Graph Attention Networks for robust visual object tracking
    Lu, Junjie
    Li, Shengyang
    Guo, Weilong
    Zhao, Manqi
    Yang, Jian
    Liu, Yunfei
    Zhou, Zhuang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [7] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01) : 24 - 33
  • [8] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    IEEE ACCESS, 2021, 9 : 7243 - 7254
  • [9] Learning Geometry Information of Target for Visual Object Tracking with Siamese Networks
    Chen, Hang
    Zhang, Weiguo
    Yan, Danghui
    SENSORS, 2021, 21 (23)
  • [10] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080