A time-domain hybrid method combining the finite-difference and physical-optics methods

被引:0
|
作者
Le Bolzer, F [1 ]
Gillard, R
Citerne, J
Hanna, VF
Wong, MF
机构
[1] INSA Rennes, CNRS, UPRESA 6075, Lab Composants & Syst Telecommun, F-35043 Rennes, France
[2] France Telecom, CNET, DMR, Issy Les Moulineaux, France
关键词
hybrid method; FDTD; physical optics;
D O I
10.1002/(SICI)1098-2760(19990420)21:2<82::AID-MOP2>3.3.CO;2-N
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new hybrid technique, entirely formulated in the time domain, has been developed and used to study small radiating sources close to large but finite scatterers. It combines a rigorous method; the finite-difference time-domain (FDTD) method, with an asymptotic method, the time-domain physical-optics (TDPO) method. Numerical examples are performed to validate the principle of the new approach and demonstrate its higher computation performances compared to the classical FDTD algorithm. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [41] A Java platform for the implementation of the finite-difference time-domain method
    Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
    不详
    SBMO IEEE MTT S Int Microwave Optoelectron Conf Proc, 2011, (927-931):
  • [42] A FINITE-DIFFERENCE TIME-DOMAIN METHOD USING WHITNEY ELEMENTS
    CHAN, CH
    SANGANI, H
    YEE, KS
    ELSON, JT
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (14) : 673 - 676
  • [43] Symplectic finite-difference time-domain method for Maxwell equations
    Jiang, Le-Le
    Mao, Jun-Fa
    Wu, Xian-Liang
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (08) : 1991 - 1995
  • [44] Modeling SPR sensors with the finite-difference time-domain method
    Christensen, D
    Fowers, D
    BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7): : 677 - 684
  • [45] CUDA Fortran acceleration for the finite-difference time-domain method
    Hadi, Mohammed F.
    Esmaeili, Seyed A.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (05) : 1395 - 1400
  • [46] Weakly conditionally stable finite-difference time-domain method
    Chen, J.
    Wang, J.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (11) : 1927 - 1936
  • [47] A SCALAR FINITE-DIFFERENCE TIME-DOMAIN APPROACH TO GUIDED-WAVE OPTICS
    HUANG, WP
    CHU, ST
    GOSS, A
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (06) : 524 - 526
  • [48] Treating late-time instability of hybrid finite-element/finite-difference time-domain method
    Hwang, CT
    Wu, RB
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (02) : 227 - 232
  • [49] Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging
    Salski, Bartlomiej
    Gwarek, Wojciech
    APPLIED OPTICS, 2009, 48 (11) : 2133 - 2138
  • [50] Hybrid Simulation of ESD Events by SPICE-Liyyke and Finite-Difference Time-Domain Methods
    Takada, Tsuyoshi
    Sekine, Tadatoshi
    Asai, Hideki
    2013 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM (EDAPS), 2013, : 197 - 200