A dynamic programming approach for L0 optimal control design

被引:2
作者
Rao, Z. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
Optimal control; dynamic programming; sparse control;
D O I
10.1016/j.ifacol.2017.08.644
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present work investigates the optimal control problems with L-0-control cost. The value function is characterized as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. The sparsity properties of optimal controllers induced by L-0-penalty is analyzed under different cases of control constraints. The existence of optimal controllers is discussed for the time-discretized problem. The value function and the optimal control are computed by solving the corresponding HJB equation. Numerical examples are presented under different types of control constraints and different penalization parameters with special attention to the sparsity. Comparisons between L-0-controller and other types of controllers are also illustrated. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2886 / 2891
页数:6
相关论文
共 9 条
[1]   Linear-quadratic control problems with <bold>L1</bold>-control cost [J].
Alt, Walter ;
Schneider, Christopher .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (04) :512-534
[2]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[3]  
Aubin J. P., 1984, GRUNDLEHREN MATH WIS, V264, DOI DOI 10.1007/978-3-642-69512-4
[4]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[5]  
Falcone M., 2014, MATH THEORY NETWORKS, P1798
[6]   OPTIMAL CONTROL WITH Lp(Ω), p ε [0,1), CONTROL COST [J].
Ito, Kazufumi ;
Kunisch, Karl .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) :1251-1275
[7]   A variational approach to sparsity optimization based on Lagrange multiplier theory [J].
Ito, Kazufumi ;
Kunisch, Karl .
INVERSE PROBLEMS, 2014, 30 (01)
[8]   Infinite Horizon Sparse Optimal Control [J].
Kalise, Dante ;
Kunisch, Karl ;
Rao, Zhiping .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (02) :481-517
[9]   On L1-minimization in optimal control and applications to robotics [J].
Vossen, G. ;
Maurer, H. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2006, 27 (06) :301-321