Modified Nel and Van der Merwe test for the multivariate Behrens-Fisher problem

被引:71
作者
Krishnamoorthy, K [1 ]
Yu, JQ [1 ]
机构
[1] Univ Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
Welch approximation; multiple comparison; size; power;
D O I
10.1016/j.spl.2003.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new test to the multivariate Behrens-Fisher problem is obtained by modifying Nel and Van der Merwe's (Comm. Statist. Theory Methods 15 (1986) 3719) test. The new test is affine invariant and it simplifies to the Welch's approximate solution to the univariate case. The merits of the new test and two existing invariant tests are evaluated using Monte Carlo method. Monte Carlo comparison shows that the new test is as powerful as the other two methods while controlling the sizes satisfactorily. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 15 条
[1]  
BENNETT BM, 1951, ANN I STAT MATH, V2, P87
[2]   A comparison of Type I error rates and power levels for seven solutions to the multivariate Behrens-Fisher problem [J].
Christensen, WF ;
Rencher, AC .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (04) :1251-1273
[3]  
JAMES GS, 1954, BIOMETRIKA, V41, P19, DOI 10.2307/2333003
[4]  
JOHANSEN S, 1980, BIOMETRIKA, V67, P85
[5]   A PRACTICAL SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER PROBLEM [J].
KIM, SJ .
BIOMETRIKA, 1992, 79 (01) :171-176
[6]  
Lehmann E. L., 1994, TESTING STAT HYPOTHE
[7]  
Muirhead R J, 1982, ASPECTS MULTIVARIATE
[8]   A SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER PROBLEM [J].
NEL, DG ;
VANDERMERWE, CA .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (12) :3719-3735
[9]   THE EXACT DISTRIBUTIONS OF THE UNIVARIATE AND MULTIVARIATE BEHRENS-FISHER STATISTICS WITH A COMPARISON OF SEVERAL SOLUTIONS IN THE UNIVARIATE CASE [J].
NEL, DG ;
VANDERMERWE, CA ;
MOSER, BK .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (01) :279-298
[10]  
Seber G. A. F., 1984, MULTIVARIATE OBSERVA, DOI DOI 10.1002/9780470316641