Uniform approximation of some classes of linear positive operators expressed by series

被引:3
作者
Agratini, Octavian [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
41A35; 26D15; modulus of smoothness; Baskakov operator; Poisson distribution; Jain operator; Szasz operator; Bohman-Korovkin theorem; Mastroianni operator;
D O I
10.1080/00036811.2014.940919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a general class of linear positive approximation processes designed using series. For continuous and bounded functions defined on unbounded interval we give rate of convergence in terms of the usual modulus of smoothness. The main goal is to identify functions for which these operators provide uniform approximation over unbounded intervals. Particular cases are delivered.
引用
收藏
页码:1662 / 1669
页数:8
相关论文
共 11 条
[1]  
Altomare F., 1994, de Gruyter Series Studies in Mathematics, V17
[2]   A VORONOVSKAYA-TYPE THEOREM FOR A GENERAL CLASS OF DISCRETE OPERATORS [J].
Bardaro, Carlo ;
Mantellini, Ilaria .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (05) :1411-1442
[3]  
Bleimann G., 1980, INDAGATIONES MATH, V42, P256
[4]  
Boyanov B D., 1970, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), V14, P9
[5]   On uniform approximation by some classical Bernstein-type operators [J].
de la Cal, J ;
Cárcamo, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :625-638
[6]  
Jain G. C., 1972, Journal of the Australian Mathematical Society, V13, P271
[7]  
Korovkin P. P., 1953, Doklady Akademii Nauk, V90, P961
[8]  
Lorentz GG., 1986, BERNSTEIN POLYNOMIAL
[9]   Approximation by the q-Szasz-Mirakjan Operators [J].
Mahmudov, N. I. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[10]  
Mastroianni G., 1979, REND ACC SC FIS MAT, V46, P161