METRIZABILITY AND SUBMETRIZABILITY FOR POINT-OPEN, OPEN-POINT AND BI-POINT-OPEN TOPOLOGIES ON C(X, Y )

被引:0
作者
Barkha [1 ]
Prasannan, Azhuthil Raghavan [2 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
[2] Univ Delhi, Maharaja Agrasen Coll, Delhi 110096, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2022年 / 37卷 / 03期
关键词
  Point-open topology; open-point topology; bi-point-open topol-ogy; metrizability; submetrizability; Go-dense; first countable;
D O I
10.4134/CKMS.c200465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize metrizability and submetrizability for point -open, open-point and bi-point-open topologies on C(X, Y ), where C(X, Y ) denotes the set of all continuous functions from space X to Y ; X is a com-pletely regular space and Y is a locally convex space.
引用
收藏
页码:905 / 913
页数:9
相关论文
共 6 条
[1]  
Arhangel skii A. V., 2008, Topological Groups and Related Structures, DOI DOI 10.2991/978-94-91216-35-0
[2]  
Arkhangel'skii A.V., 1992, MATH ITS APPL, V78
[3]   The open-point and bi-point-open topologies on C(X): Submetrizability and cardinal functions [J].
Jindal, Anubha ;
McCoy, R. A. ;
Kundu, S. .
TOPOLOGY AND ITS APPLICATIONS, 2015, 196 :229-240
[4]   The open-point and bi-point-open topologies on C(X) [J].
Jindal, Anubha ;
McCoy, R. A. ;
Kundu, S. .
TOPOLOGY AND ITS APPLICATIONS, 2015, 187 :62-74
[5]  
MCCOY RA, 1988, LECT NOTES MATH, V1315, P1
[6]  
Taylor AE, 1986, Introduction to Functional Analysis