Gray code numbers for graphs

被引:15
作者
Choo, Kelly [1 ]
MacGillivray, Gary [1 ]
机构
[1] Univ Victoria, Victoria, BC V8W 3R4, Canada
关键词
Graph colouring; cyclic Gray code;
D O I
10.26493/1855-3974.196.0df
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph H has a Gray code of k-colourings if it is possible to list all of its k-colourings in such a way that consecutive elements in the list differ in the colour of exactly one vertex. We prove that for any graph H, there is a least integer k(0)(H) such that H has a Gray code of k-colourings whenever k >= k(0)(H). We then determine k(0)(H) whenever H is a complete graph, tree, or cycle.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1989, COMBINATORIAL ALGORI
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]  
Bonsma P., 2007, ELECT NOTES DISCRETE, V29, P463
[4]  
Cereceda L., J GRAPH THE IN PRESS
[5]   Connectedness of the graph of vertex-colourings [J].
Cereceda, Luis ;
van den Heuvel, Jan ;
Johnson, Matthew .
DISCRETE MATHEMATICS, 2008, 308 (5-6) :913-919
[6]   Mixing 3-colourings in bipartite graphs [J].
Cereceda, Luis ;
van den Heuvel, Jan ;
Johnson, Matthew .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) :1593-1606
[7]   Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey [J].
Curran, SJ ;
Gallian, JA .
DISCRETE MATHEMATICS, 1996, 156 (1-3) :1-18
[8]   Randomly coloring sparse random graphs with fewer colors than the maximum degree [J].
Dyer, Martin ;
Flaxman, Abraham D. ;
Frieze, Alan M. ;
Vigoda, Eric .
RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (04) :450-465
[9]  
Jensen T., 1995, Graph Coloring Problems, P115
[10]   A VERY SIMPLE ALGORITHM FOR ESTIMATING THE NUMBER OF K-COLORINGS OF A LOW-DEGREE GRAPH [J].
JERRUM, M .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (02) :157-165