Spacelike translating solitons in Lorentzian product spaces: Nonexistence, Calabi-Bernstein type results and examples

被引:15
作者
Batista, Marcio [1 ]
de Lima, Henrique F. [2 ]
机构
[1] Univ Fed Alagoas, CPMAT IM, BR-57072970 Maceio, Alagoas, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Lorentzian product spaces; Minkowski space; spacelike translating solitons; entire spacelike translating graphs; Calabi-Bernstein type results; MEAN-CURVATURE FLOW; RIEMANNIAN-MANIFOLDS; FORCING TERM; HYPERSURFACES; SINGULARITIES; UNIQUENESS; GEOMETRY; GRAPHS;
D O I
10.1142/S0219199721500346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish nonexistence results for complete spacelike translating solitons immersed in a Lorentzian product space R-1 x P-n, under suitable curvature constraints on the curvatures of the Riemannian base P-n. In particular, we obtain Calabi-Bernstein type results for entire translating graphs constructed over P-n. For this, we prove a version of the Omori-Yau's maximum principle for complete spacelike translating solitons. Besides, we also use other two analytical tools related to an appropriate drift Laplacian: a parabolicity criterion and certain integrability properties. Furthermore, under the assumption that the base P-n is non-positively curved, we close our paper constructing new examples of rotationally symmetric spacelike translating solitons embedded into R-1 x P-n.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Mean curvature flow with a forcing term in Minkowski space [J].
Aarons, MAS .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :205-246
[2]   New examples of entire maximal graphs in H2 x R1 [J].
Albujer, Alma L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :456-462
[3]  
Albujer AL, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1134-8
[4]   Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces [J].
Albujer, Alma L. ;
Alias, Luis J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) :620-631
[5]  
Alias L.J., 2016, Springer Monographs in Mathematics
[6]   Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Colares, A. Gervasio .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 :703-729
[7]   ASYMPTOTIC SHAPE OF CUSP SINGULARITIES IN CURVE SHORTENING [J].
ANGENENT, SB ;
VELAZQUEZ, JJL .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (01) :71-110
[8]  
Angenent SB, 1997, J REINE ANGEW MATH, V482, P15
[9]  
[Anonymous], 1985, Lecture Notes in Math.
[10]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300